• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas] plano tangente

[Derivadas] plano tangente

Mensagempor Higor Yuri » Seg Jun 18, 2012 12:33

Consigo achar a equação do plano qndo tenho um ponto e tudo, mas nessa questão me pede pra encontrar os pontos da esfera que é paralalelo a outro plano

Determine os pontos da esfera x²+y²+z²=1 onde o plano tangente é paralelo ao plano 2x + y - 3z = 2

por favor me ajudem

grato
Higor Yuri
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Jun 18, 2012 12:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Derivadas] plano tangente

Mensagempor LuizAquino » Ter Jun 19, 2012 11:47

Higor Yuri escreveu:Consigo achar a equação do plano qndo tenho um ponto e tudo, mas nessa questão me pede pra encontrar os pontos da esfera que é paralalelo a outro plano

Determine os pontos da esfera x²+y²+z²=1 onde o plano tangente é paralelo ao plano 2x + y - 3z = 2


Dos conhecimentos de Geometria Analítica, sabemos que dois planos são paralelos quando seus vetores normais possuem a mesma direção (ou seja, os vetores normais são paralelos).

Sabemos que o vetor normal a esfera no ponto (x_0,\,y_0,\,z_0) será dado por \vec{n} = \nabla F (x_0,\,y_0,\,z_0) , onde F(x,\,y,\,z) = x^2 + y^2 + z^2 .

Caculando o gradiente, temos que \vec{n} = (2x_0,\,2y_0,\,2z_0) .

Por outro lado, um vetor normal do plano 2x + y - 3z = 2 será dado por \vec{m} = (2,\,1,\,-3) .

Para que os vetores \vec{n} e \vec{m} possuam a mesma direção, deve existir um escalar k tal que \vec{n} = k\vec{m} . De onde concluímos que:

(x_0,\,y_0,\,z_0) = \left(k,\,\frac{k}{2},\,-\frac{3k}{2}\right)

Substituindo essa informação na equação da esfera, temos que:

k^2 + \left(\frac{k}{2}\right)^2 + \left(-\frac{3k}{2}\right)^2 = 1

Agora tente concluir o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: