• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida Urgente!

Duvida Urgente!

Mensagempor RJCT » Qua Jun 13, 2012 18:50

Boa noite preciso de ajuda nesta demostração, nao sei se devo resolver as derivadas parciais cruzadas ou se existe uma forma mais simples...

Dado f(x,y) = xy(\frac{x^2-y^2}{x^2+y^2}) se (x,y)\neq (0,0) e f(0,0)= 0, mostre que \frac{d^2f}{dxdy}(0,0)\neq \frac{d^2f}{dydx}(0,0)

Gostaria que alguém me desse uma ideia de como pegar nisto..
RJCT
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Jun 13, 2012 18:47
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: Engenharia
Andamento: cursando

Re: Duvida Urgente!

Mensagempor LuizAquino » Sex Jun 15, 2012 16:52

RJCT escreveu:Boa noite preciso de ajuda nesta demostração, nao sei se devo resolver as derivadas parciais cruzadas ou se existe uma forma mais simples...

Dado f(x,y) = xy(\frac{x^2-y^2}{x^2+y^2}) se (x,y)\neq (0,0) e f(0,0)= 0, mostre que \frac{d^2f}{dxdy}(0,0)\neq \frac{d^2f}{dydx}(0,0)

Gostaria que alguém me desse uma ideia de como pegar nisto..


Eu vou mostrar como calcular \frac{\partial^2 f}{\partial x \partial y} (0,\,0) e você tenta calcular \frac{\partial^2 f}{\partial y \partial x} (0,\,0) .

Aplicando a definição de derivada, temos que:

\frac{\partial^2 f}{\partial x \partial y} (0,\,0) = f_{xy}(0,\,0) = \lim_{h\to 0} \frac{f_x(0,\,0+h)-f_x(0,\,0)}{h}

Precisamos então calcular f_x(0,\,h) (com h\neq 0) e f_x(0,\,0) .

Calculando f_x(0,\,h), temos que:

f_x(0,\,h) = \lim_{u\to 0} \frac{f(0+u,\,h) - f(0,\,h)}{u}

f_x(0,\,h) = \lim_{u\to 0} \frac{uh\frac{u^2 - h^2}{u^2 + h^2} - 0}{u}

f_x(0,\,h) = \lim_{u\to 0} h\frac{u^2 - h^2}{u^2 + h^2}

f_x(0,\,h) = -h

Calculando f_x(0,\,0), temos que:

f_x(0,\,0) = \lim_{u\to 0} \frac{f(0+u,\,0) - f(0,\,0)}{u}

f_x(0,\,0) = \lim_{u\to 0} \frac{0 - 0}{u}

f_x(0,\,0) = 0

Voltando para o cálculo de \frac{\partial^2 f}{\partial x \partial y}, temos que:

\frac{\partial^2 f}{\partial x \partial y} (0,\,0) = \lim_{h\to 0} \frac{-h - 0}{h}

\frac{\partial^2 f}{\partial x \partial y} (0,\,0) = -1

Agora use a definição de derivada para calcular \frac{\partial^2 f}{\partial y \partial x} (0,\,0) . Você irá encontrar que \frac{\partial^2 f}{\partial y \partial x} (0,\,0) = 1 . Portanto, poderá concluir que \frac{\partial^2 f}{\partial x \partial y} (0,\,0) \neq \frac{\partial^2 f}{\partial y \partial x} (0,\,0) .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: