• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integrais] é possivel multiplicar?

[Integrais] é possivel multiplicar?

Mensagempor Bruno Anastacio » Sáb Mai 26, 2012 23:35

Matemática - Integrais
Tenho que verificar se:

\int_{}^{} f \left(x \right)g \left(x \right) = (\int_{}^{}f(x)dx)(\int_{}^{}g(x)dx)

comecei assim:
\int_{}^{} f \left(x \right)g \left(x \right) = (\int_{}^{}f(x)dx)(\int_{}^{}g(x)dx)
\int_{}^{} f \left(x \right)g \left(x \right) = f(x)\int_{}^{}dx * g(x)\int_{}^{}dx
\int_{}^{} f \left(x \right)g \left(x \right) = f(x)x+c * g(x)x+c

e aqui travei...
Meu raciocínio está certo? Eu tenho que multiplicar (\int_{}^{}f(x)dx)(\int_{}^{}g(x)dx) ?
Bruno Anastacio
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Mai 26, 2012 23:14
Formação Escolar: GRADUAÇÃO
Área/Curso: sistemas de informação
Andamento: cursando

Re: [Integrais] é possivel multiplicar?

Mensagempor MarceloFantini » Dom Mai 27, 2012 15:33

Isto não é verdade. Tome f(x) = g(x) = x no intervalo [0,1] e calcule os dois lados, verá que são diferentes. Quando um enunciado diz "verifique se", isto significa que a afirmação pode não ser verdadeira e cabe a você exibir um contra-exemplo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integrais] é possivel multiplicar?

Mensagempor Guill » Dom Mai 27, 2012 16:32

De fato, isso é impossível para funções não nulas:

\int_{}^{}f(x).g(x)dx = \left(\int_{}^{}f(x)dx \right)\left(\int_{}^{}g(x)dx \right)


Derivando:

f(x).g(x) = \left(\int_{}^{}f(x)dx \right).g(x) + \left(\int_{}^{}g(x)dx \right).f(x)


Se as funções forem iguais (f(x) = g(x)):

f(x) = 2.\left(\int_{}^{}f(x)dx \right)\rightarrow f(x) = 0


Se as funções forem diferentes, existe uma função h(x) não nula tal que f(x) = g(x) + h(x):

[g(x) + h(x)].g(x) = \left(\int_{}^{}g(x)dx \right).g(x) + \left(\int_{}^{}h(x)dx \right).g(x) + \left(\int_{}^{}g(x)dx \right).g(x) + \left(\int_{}^{}g(x)dx \right).h(x)

[g(x).g(x) + h(x).g(x) = 2.\left(\int_{}^{}g(x)dx \right).g(x) + \left(\int_{}^{}h(x)dx \right).g(x) + \left(\int_{}^{}g(x)dx \right).h(x)

Daí:

g(x).g(x) + h(x).g(x) = 2.\left(\int_{}^{}g(x)dx \right).g(x) + h(x).g(x)

g(x).g(x) = 2.\left(\int_{}^{}g(x)dx \right).g(x)

g(x) = 2.\left(\int_{}^{}g(x)dx \right)


Chegamos em f(x) = 0.
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}