por jacquelline » Qui Mai 17, 2012 11:04
Boa noite!
Alguem poderia me ajudar a resolver essa Equação?!

r1 = x + 2y + 1
r2 = 2x + 4y + 3
u = x + 2y + 1 --> du = dx + 2dy
2u = 2x + 4y + 2
2u + 1 = 2x + 4y + 3

(2u + 1)(du - dx) = u(2dx)
(2u + 1)du - (2u + 1)dx = 2udx
(2u + 1)du = 2udx + (2u + 1)dx
(2u + 1)du = 2udx + 2udx + dx
(2u + 1)du = 4udx + dx
(2u + 1)/(4u) du = 2dx






essa resolução esta correta?!
Ah resposta final tem que ser 2x+4y+2+ln|2x+4y+5/4| = 8x
Vou ficar no aguardo de respostas
Desde ja Agradeço

-
jacquelline
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Mai 17, 2012 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Eletrica
- Andamento: cursando
por LuizAquino » Sex Mai 18, 2012 19:10
jacquelline escreveu:Boa noite!
Alguem poderia me ajudar a resolver essa Equação?!

r1 = x + 2y + 1
r2 = 2x + 4y + 3
u = x + 2y + 1 --> du = dx + 2dy
2u = 2x + 4y + 2
2u + 1 = 2x + 4y + 3

(2u + 1)(du - dx) = u(2dx)
(2u + 1)du - (2u + 1)dx = 2udx
(2u + 1)du = 2udx + (2u + 1)dx
(2u + 1)du = 2udx + 2udx + dx
(2u + 1)du = 4udx + dx
(2u + 1)/(4u) du = 2dx






essa resolução esta correta?!
Ah resposta final tem que ser 2x+4y+2+ln|2x+4y+5/4| = 8x
Vou ficar no aguardo de respostas
Desde ja Agradeço

Reveja o seguinte trecho:
(2u + 1)du = 4udx + dx
(2u + 1)/(4u) du = 2dx
O correto seria:


Agora refaça o exercício a partir daí.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por jacquelline » Sáb Mai 19, 2012 20:37
Nossa que falha minha
Muito obrigada mesmo pelo ajuda... agora vai fazer um diferença muuuuito grande =D
bjok's

-
jacquelline
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Mai 17, 2012 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Eletrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação Diferencial.
por Higor » Seg Fev 21, 2011 13:12
- 4 Respostas
- 11995 Exibições
- Última mensagem por Higor

Seg Fev 21, 2011 14:46
Cálculo: Limites, Derivadas e Integrais
-
- Equaçao diferencial
por romulo39 » Dom Abr 03, 2011 20:58
- 1 Respostas
- 3814 Exibições
- Última mensagem por LuizAquino

Seg Abr 04, 2011 14:39
Cálculo: Limites, Derivadas e Integrais
-
- Equação diferencial - 1
por Cleyson007 » Qua Nov 07, 2012 21:09
- 8 Respostas
- 3598 Exibições
- Última mensagem por MarceloFantini

Qui Nov 08, 2012 17:05
Cálculo: Limites, Derivadas e Integrais
-
- Equação diferencial - 2
por Cleyson007 » Qua Nov 07, 2012 21:14
- 1 Respostas
- 1395 Exibições
- Última mensagem por e8group

Qua Nov 14, 2012 10:06
Cálculo: Limites, Derivadas e Integrais
-
- Equação diferencial - 3
por Cleyson007 » Qua Nov 07, 2012 21:19
- 1 Respostas
- 1281 Exibições
- Última mensagem por young_jedi

Qui Nov 08, 2012 12:33
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
função demanda
Autor:
ssousa3 - Dom Abr 03, 2011 20:55
alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear
Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato
Assunto:
função demanda
Autor:
ssousa3 - Seg Abr 04, 2011 14:30
Gente alguém por favor me ensine a calcular a fórmula da função demanda

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.