por Ana_Rodrigues » Dom Mai 13, 2012 09:33
Um farol giratório completa uma volta a cada 15 segundos. O farol está a 60m de P, o ponto mais próximo em uma praia retilínea. Determine a razão em que um raio de luz do farol está se movendo ao longo da praia em um ponto, Q, a 150m de P.
Resposta:

Eu não estou conseguindo achar uma equação que relacione o ponto P e Q. Primeiro eu pensei na seguinte situação
O farol seria o centro das circunferências que passam pelos pontos P e Q e pensei nos pontos P, Q e o farol como pontos colineares, daí seria fácil achar o raio da circunferência que passa por Q, mas não necessariamente isso tem que ocorrer. Daí o máximo que consegui fazer foi achar a taxa de variação de P que é:
Como posso achar uma equação que relacione P e Q?
-
Ana_Rodrigues
- Usuário Parceiro

-
- Mensagens: 51
- Registrado em: Seg Nov 14, 2011 09:44
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizAquino » Seg Mai 14, 2012 10:16
Ana_Rodrigues escreveu:Um farol giratório completa uma volta a cada 15 segundos. O farol está a 60m de P, o ponto mais próximo em uma praia retilínea. Determine a razão em que um raio de luz do farol está se movendo ao longo da praia em um ponto, Q, a 150m de P.
Resposta:

Ana_Rodrigues escreveu:Eu não estou conseguindo achar uma equação que relacione o ponto P e Q. Primeiro eu pensei na seguinte situação
O farol seria o centro das circunferências que passam pelos pontos P e Q e pensei nos pontos P, Q e o farol como pontos colineares, daí seria fácil achar o raio da circunferência que passa por Q, mas não necessariamente isso tem que ocorrer. Daí o máximo que consegui fazer foi achar a taxa de variação de P que é:
Como posso achar uma equação que relacione P e Q?
Note que P, Q e F não são colineares. Além disso, essa taxa de variação que você determinou não faz sentido.
Vejamos o início da resolução.
A figura abaixo ilustra o exercício.

- figura.png (11.64 KiB) Exibido 5360 vezes
Deseja-se saber o que acontece quando x = 150 m. Nesse caso, teremos S = Q.
Como o farol dá 1 volta completa a cada 15 segundos, temos que a taxa de variação do ângulo

em relação ao tempo é igual a

. Em outras palavras, temos que

.
Analisando o triângulo retângulo ilustrado na figura, temos que:

Sendo assim, temos que:

Quando x = 150 m, no triângulo retângulo temos que:

Agora tente continuar o exercício a partir daí.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivadas] Taxas Relacionadas
por JoaoLuiz07 » Ter Jun 02, 2015 20:54
- 1 Respostas
- 4467 Exibições
- Última mensagem por Cleyson007

Ter Jun 02, 2015 23:59
Cálculo: Limites, Derivadas e Integrais
-
- [Taxas relacionadas] Derivadas
por rzarour » Seg Fev 29, 2016 15:05
- 0 Respostas
- 1540 Exibições
- Última mensagem por rzarour

Seg Fev 29, 2016 15:05
Cálculo: Limites, Derivadas e Integrais
-
- [Taxas Relacionadas]
por Ana_Rodrigues » Seg Nov 14, 2011 10:02
- 2 Respostas
- 4484 Exibições
- Última mensagem por LuizAquino

Seg Nov 14, 2011 12:19
Cálculo: Limites, Derivadas e Integrais
-
- Taxas Relacionadas
por RonnieAlmeida » Qui Mai 22, 2014 16:48
- 0 Respostas
- 1398 Exibições
- Última mensagem por RonnieAlmeida

Qui Mai 22, 2014 16:48
Cálculo: Limites, Derivadas e Integrais
-
- Taxas Relacionadas
por RonnieAlmeida » Qui Mai 22, 2014 16:58
- 1 Respostas
- 2631 Exibições
- Última mensagem por alienante

Dom Jun 15, 2014 07:59
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Funções
Autor:
Emilia - Sex Dez 03, 2010 13:24
Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.