• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral definida a=-2 b=-3 t(t+1)²

integral definida a=-2 b=-3 t(t+1)²

Mensagempor bicio29 » Qua Mai 02, 2012 08:58

Bom dia a todos,

Não estou conseguindo chegar na resposta -73/12, resovendo integral definida a=-2 b=-3 t(t+1)² dessa maneira:

t(t+1)²
t(t+1).(t+1)
t.(t²+t+t+1)
t. (t²+2t+1)
t²/2.(t³/3+2t²/2+t)

será que esse procediemnto está certo?
bicio29
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 20, 2011 08:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica
Andamento: cursando

Re: integral definida a=-2 b=-3 t(t+1)²

Mensagempor nakagumahissao » Qua Mai 02, 2012 11:53

\int_{-2}^{-3} t{(t+1)}^{2} dt = \int_{-2}^{-3} t({t}^{2} + 2t + 1) dt

= \int_{-2}^{-3} ({t}^{3} + 2{t}^{2} + t)dt = \frac{{t}^{4}}{4} + 2 \frac{{t}^{3}}{3}  + \frac{{t}^{2}}{2} ](-2, -3)

Substituindo-se t por -3 e -2 respectivamente, obtemos:

= \frac{{(-3)}^{4}}{4} + 2 \frac{{(-3)}^{3}}{3}  + \frac{{(-3)}^{2}}{2} -  \left[\frac{{(-2)}^{4}}{4} + 2 \frac{{(-2)}^{3}}{3}  + \frac{{(-2)}^{2}}{2} \right]

= \frac{81}{4} -18  + \frac{9}{2} -  \left(4 -\frac{16}{3} + 2 \right)

= \frac{81}{4} + \frac{9}{2} + \frac{16}{3} - 18 - 4 -2 =

= \frac{81}{4} + \frac{9}{2} + \frac{16}{3} - 24 =

= \frac{243 + 54 + 64 - 288}{12}

\int_{-2}^{-3} t{(t+1)}^{2} dt = \frac{73}{12}

Observação:

\int_{-3}^{-2} t{(t+1)}^{2} dt  = - \frac{73}{12}

Portanto, ou a=-2, b=-3 estão invertidos (a=-3, b=-2), ou a resposta está errada (-73/12). Poderia confirmar se o enunciado está correto por favor?


Grato.



Sandro
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?