por Cleyson007 » Sáb Abr 28, 2012 17:00
Boa tarde a todos!
Sejam

e

um ponto de acumulação de

.
a) Mostre que se ambos


existem, então o

existe.
b) Se

, segue que

existe?
Ficarei agradecido se alguém souber resolver e puder me ajudar.
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por LuizAquino » Ter Mai 01, 2012 16:36
Cleyson007 escreveu:Sejam

e

um ponto de acumulação de

.
a) Mostre que se ambos

e

existem, então o

existe.
Considerando que os resultados desses limites sejam finitos, podemos escrever as hipóteses como:
(i)

;
(ii)

.
Essas hipóteses podem ser reescritas como:
(i) para todo

exite

tal que

;
(ii) para todo

exite

tal que

;
Pela hipótese (i), dado o número

(com

), existe

tal que

.
Por outro lado, pela hipótese (ii), dado o número

(com

), existe

tal que

.
Tomando

, temos que:
Somando as duas inequações, temos que:
Mas pela desigualdade triangular, temos que:

Sendo assim, temos que:
Desse modo, temos que

existe e é igual a (M - L).
Agora analise os casos nos quais os resultados dos limites sejam infinitos.
Cleyson007 escreveu:b) Se

, segue que

existe?
Suponha que f(x) = x e

. Note que

e

existem, mas

não existe.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Existe ou não o limite?
por Cleyson007 » Sáb Abr 28, 2012 17:28
- 2 Respostas
- 1882 Exibições
- Última mensagem por MarceloFantini

Dom Abr 29, 2012 14:14
Cálculo: Limites, Derivadas e Integrais
-
- O limite existe ou não?
por Cleyson007 » Sáb Abr 28, 2012 17:30
- 3 Respostas
- 2043 Exibições
- Última mensagem por Guill

Dom Abr 29, 2012 15:09
Cálculo: Limites, Derivadas e Integrais
-
- Prova de que o limite não existe.
por arthur_ » Sáb Ago 22, 2009 21:29
- 2 Respostas
- 6271 Exibições
- Última mensagem por arthur_

Dom Ago 23, 2009 15:12
Cálculo: Limites, Derivadas e Integrais
-
- Prove que o limite existe
por Cleyson007 » Sáb Abr 28, 2012 16:48
- 2 Respostas
- 1375 Exibições
- Última mensagem por MarceloFantini

Dom Abr 29, 2012 15:02
Cálculo: Limites, Derivadas e Integrais
-
- L'Hôpital - Por que o limite não existe?
por tiago_28 » Ter Mai 19, 2015 20:10
- 1 Respostas
- 2590 Exibições
- Última mensagem por lucas7

Qua Mai 20, 2015 20:45
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.