por Subject Delta » Qua Abr 25, 2012 17:37
Olá,acabei de me registrar no fórum e espero aprender algo e ser de alguma ajuda por aqui.
Vamos à minha dúvida:
Estava vendo alguns vídeos do Canal do LCMAquino(
http://www.youtube.com/user/LCMAquino) e fiquei "empacado" em exatamente uma parte desse vídeo:(
http://www.youtube.com/watch?v=P4nYv6p8DQc),que mostra as regras operatórias das derivadas e suas respectivas demonstrações.
Minha dúvida foi exatamente nessa parte:

Como o denominador "passou" de 'h' para hg(x+h) g(x)? Digo,qual foi a operação exata que ele fez nessa parte?
Sei que deve ser uma dúvida boba,mas não gosto de deixar nenhuma dúvida no ar e muito menos de "decorar" algo.
Enfim,espero que eu tenha explicado claramente! Abraços e obrigado desde já.

-

Subject Delta
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Abr 25, 2012 17:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: cursando
por Russman » Qua Abr 25, 2012 20:05
Veja que quando se opera o numerador do limite se obtem uma fração de denominador g(x).g(x+h). Como esta fração esta sendo dividida ainda por h o denominador seja o produto de h com g(x).g(x+h).
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Subject Delta » Qua Abr 25, 2012 21:23
Russman escreveu:Veja que quando se opera o numerador do limite se obtem uma fração de denominador g(x).g(x+h). Como esta fração esta sendo dividida ainda por h o denominador seja o produto de h com g(x).g(x+h).
Realmente,uma dúvida boba.
MUITO obrigado pela resposta.
Abraços!
-

Subject Delta
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Abr 25, 2012 17:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Regras Operatórias das Derivadas
por Claudin » Sex Jun 10, 2011 15:20
- 4 Respostas
- 4794 Exibições
- Última mensagem por Claudin

Seg Jun 13, 2011 22:04
Cálculo: Limites, Derivadas e Integrais
-
- Propriedades Operatórias do Limite
por J0elKim » Qui Abr 18, 2013 22:55
- 2 Respostas
- 2168 Exibições
- Última mensagem por J0elKim

Dom Abr 21, 2013 19:59
Cálculo: Limites, Derivadas e Integrais
-
- Problema com Derivadas
por carlosvinnicius » Seg Dez 27, 2010 01:08
- 4 Respostas
- 2806 Exibições
- Última mensagem por carlosvinnicius

Seg Dez 27, 2010 14:30
Cálculo: Limites, Derivadas e Integrais
-
- Problema envolvendo derivadas.
por arthurvct » Sex Mai 03, 2013 20:16
- 4 Respostas
- 2873 Exibições
- Última mensagem por arthurvct

Qui Mai 16, 2013 19:23
Cálculo: Limites, Derivadas e Integrais
-
- Problema de otimização - Derivadas
por Napiresilva » Seg Out 10, 2016 15:21
- 1 Respostas
- 3196 Exibições
- Última mensagem por adauto martins

Qui Out 13, 2016 17:07
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.