• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limite]

[limite]

Mensagempor Priscilla Correa » Sáb Abr 07, 2012 15:44

\lim_{x \rightarrow 0}\sqrt[n]x - \sqrt[n]p{}{} / x - p

Alguém pode me ajudar??
Priscilla Correa
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Abr 07, 2012 08:58
Formação Escolar: GRADUAÇÃO
Área/Curso: ENGENHARIA
Andamento: cursando

Re: [limite]

Mensagempor LuizAquino » Sáb Abr 07, 2012 16:06

Priscilla Correa escreveu:\lim_{x \rightarrow 0}\sqrt[n]x - \sqrt[n]p{}{} / x - p

Alguém pode me ajudar??


O que você escreveu é equivalente a:

\lim_{x \to 0}\sqrt[n]{x} - \frac{\sqrt[n]{p}}{x} - p

Mas eu presumo que o exercício original seja:

\lim_{x \to p}\frac{\sqrt[n]{x} - \sqrt[n]{p}}{x - p}

Se você queria dizer isso, então deveria ter escrito algo como:

\lim_{x \to p}\left(\sqrt[n]{x} - \sqrt[n]{p}\right)/(x - p)

Note a importância do uso dos parênteses! Além disso, note que x tende a p e não a 0.

Falando agora sobre a resolução desse limite, note que:

\lim_{x \to p}\frac{\sqrt[n]{x} - \sqrt[n]{p}}{x - p} = \lim_{x \to p} \frac{\sqrt[n]{x} - \sqrt[n]{p}}{\left(\sqrt[n]{x}\right)^n - \left(\sqrt[n]{p}\right)^n}

Agora use o produto notável:

a^n - b^n = (a-b)\left(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \ldots + a^2b^{n-3} + ab^{n-2} + b^{n-1}\right)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [limite]

Mensagempor Priscilla Correa » Sáb Abr 07, 2012 16:15

Obrigada pela resposta, eu fiquei meio confusa na hora de escrever a função e acabei digitando errado.
Então, eu resolvi e deu 1/0 (um sobre zero). Será que é isso mesmo???
Priscilla Correa
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Abr 07, 2012 08:58
Formação Escolar: GRADUAÇÃO
Área/Curso: ENGENHARIA
Andamento: cursando

Re: [limite]

Mensagempor LuizAquino » Sáb Abr 07, 2012 16:19

Priscilla Correa escreveu:Obrigada pela resposta, eu fiquei meio confusa na hora de escrever a função e acabei digitando errado.
Então, eu resolvi e deu 1/0 (um sobre zero). Será que é isso mesmo???


O resultado não é esse. Envie a sua resolução para que possamos corrigi-la.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [limite]

Mensagempor Priscilla Correa » Sáb Abr 07, 2012 16:33

Eu refiz e cheguei a outro resultado.
\lim_{x \rightarrow p}(\sqrt[n]x - \sqrt[n]p{}{}) / (x - p)
= \lim_{x \rightarrow p}(\sqrt[n]x - \sqrt[n]p{}{})(\sqrt[n]x + \sqrt[n]p{}{})/ (x - p)(\sqrt[n]x + \sqrt[n]p{}{})= \lim_{x \rightarrow p} 1/(\sqrt[n]x + \sqrt[n]p{}{}) = 1/(\sqrt[n]p + \sqrt[n]p{}{})

Será que está certo??
Priscilla Correa
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Abr 07, 2012 08:58
Formação Escolar: GRADUAÇÃO
Área/Curso: ENGENHARIA
Andamento: cursando

Re: [limite]

Mensagempor LuizAquino » Sáb Abr 07, 2012 16:54

Priscilla Correa escreveu:Eu refiz e cheguei a outro resultado.
\lim_{x \rightarrow p}(\sqrt[n]x - \sqrt[n]p{}{}) / (x - p)
= \lim_{x \rightarrow p}(\sqrt[n]x - \sqrt[n]p{}{})(\sqrt[n]x + \sqrt[n]p{}{})/ (x - p)(\sqrt[n]x + \sqrt[n]p{}{})= \lim_{x \rightarrow p} 1/(\sqrt[n]x + \sqrt[n]p{}{}) = 1/(\sqrt[n]p + \sqrt[n]p{}{})

Será que está certo??


Está errado. O seu erro está em achar que \left(\sqrt[n]{x} - \sqrt[n]{p}\right)\right\left(\sqrt[n]{x} + \sqrt[n]{p}\right) é igual a x - p.

Por exemplo, note que:

\left(\sqrt[3]{x} - \sqrt[3]{p}\right)\right\left(\sqrt[3]{x} + \sqrt[3]{p}\right) = \left(\sqrt[3]{x}\right)^2 - \left(\sqrt[3]{p}\right)^2 \neq x - p

Usando o produto notável que indiquei anteriormente, temos que:

\lim_{x \to p}\frac{\sqrt[n]{x} - \sqrt[n]{p}}{x - p} = \lim_{x \to p} \frac{\sqrt[n]{x} - \sqrt[n]{p}}{\left(\sqrt[n]{x}\right)^n - \left(\sqrt[n]{p}\right)^n}

= \lim_{x\to p}\frac{\sqrt[n]{x} - \sqrt[n]{p}}{(\sqrt[n]{x} - \sqrt[n]{p})(\sqrt[n]{x}^{n-1} + \sqrt[n]{x}^{n-2}\sqrt[n]{p} + \sqrt[n]{x}^{n-3}\sqrt[n]{p}^2+\ldots \sqrt[n]{x}^2\sqrt[n]{p}^{n-3} + \sqrt[n]{x}\sqrt[n]{p}^{n-2} + \sqrt[n]{p}^{n-1})}

= \lim_{x\to p}\frac{1}{\sqrt[n]{x}^{n-1} + \sqrt[n]{x}^{n-2}\sqrt[n]{p} + \sqrt[n]{x}^{n-3}\sqrt[n]{p}^2+\ldots \sqrt[n]{x}^2\sqrt[n]{p}^{n-3} + \sqrt[n]{x}\sqrt[n]{p}^{n-2} + \sqrt[n]{p}^{n-1}}

Agora tente terminar o exercício.

Uma dica: para que você possa entender melhor o que acontece no caso geral, estude o que acontece em um caso particular. Por exemplo, quando n = 3 temos que:

\lim_{x \to p}\frac{\sqrt[3]{x} - \sqrt[3]{p}}{x - p} = \lim_{x \to p} \frac{\sqrt[3]{x} - \sqrt[3]{p}}{\left(\sqrt[3]{x}\right)^3 - \left(\sqrt[3]{p}\right)^3}

= \lim_{x\to p}\frac{\sqrt[3]{x} - \sqrt[3]{p}}{\left(\sqrt[3]{x} - \sqrt[3]{p}\right)\left(\sqrt[3]{x}^{2} + \sqrt[3]{x}\sqrt[3]{p} + \sqrt[3]{p}^2\right)}

= \lim_{x\to p}\frac{1}{\sqrt[3]{x}^{2} + \sqrt[3]{x}\sqrt[3]{p} + \sqrt[3]{p}^2}

Agora tente continuar.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59