• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites trigonométricos (subtração de tangentes)

Limites trigonométricos (subtração de tangentes)

Mensagempor Arthur_Bulcao » Seg Abr 02, 2012 17:27

Mais uma vez, eu com dúvidas.
Sem usar L'Hospital, poderiam me ajudar a resolver:

\lim_{x\rightarrow a}\;\frac{tg(x)-tg(a)}{x-a}

Não tenho a mínima noção de como começar.
Obrigado.
Editado pela última vez por Arthur_Bulcao em Seg Abr 02, 2012 18:04, em um total de 1 vez.
Arthur_Bulcao
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Mar 23, 2012 17:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Graduação em Engenharia Acústica
Andamento: cursando

Re: Limites trigonométricos (subtração de tangentes)

Mensagempor Arthur_Bulcao » Seg Abr 02, 2012 18:04

Saquei!!

Lembrei que
tg(a-b)=\frac{\emph{tg(a)-tg(b)}}{1+tg(a).tg(b)}\;\Rightarrow\\\;\emph{tg(a)-tg(b)}=tg(a-b).[1+tg(a).tg(b)]

e dá pra substituir:
\lim_{x\rightarrow a}\;\frac{\emph{tg(x)-tg(a)}}{x-a} \Rightarrow Substituindo \Rightarrow\,\lim_{x\rightarrow a}\;\frac{\emph{tg(a-b).[1+tg(a).tg(b)]}}{x-a}

Usando uma das propriedades de limites, temos:
\lim_{x\rightarrow a}\;\frac{tg(a-b)}{x-a}\,.\,\lim_{x\rightarrow a}[1+tg(a).tg(b)]

Em suma, o resultado é

\lim_{x\rightarrow a}\;\frac{tg(a-b)}{x-a}\,.\,\lim_{x\rightarrow a}[1+tg(a).tg(b)]\:=\:sec^2a
Arthur_Bulcao
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Mar 23, 2012 17:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Graduação em Engenharia Acústica
Andamento: cursando

Re: Limites trigonométricos (subtração de tangentes)

Mensagempor MarceloFantini » Seg Abr 02, 2012 19:28

Sua resolução está mal escrita. Primeiro, você esqueceu de trocar o b por x, segundo, você não mostrou porque \lim_{x \to a} \frac{tg(a-x)}{x-a} = 1.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: