• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Continuidades

Continuidades

Mensagempor Kabection » Qui Mar 29, 2012 22:20

queria uma ajuda para conseguir fatorar esse limite, o unico modo que consigo para resolver, é usando a tabela de valores próximos do x usando calculadora. Alguém sabe fazer de outro modo?

h(x)= {\frac{\sqrt{x}-\sqrt{5}}{\sqrt{x+5}-\sqrt{10}} se x for diferente de 5, L\ se\ x=5

Usando a tabela calculando valores próximos a resposta dá 1,4142 = \sqrt{2}.
Kabection
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Jan 16, 2012 15:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Continuidades

Mensagempor LuizAquino » Sex Mar 30, 2012 02:21

Kabection escreveu:queria uma ajuda para conseguir fatorar esse limite, o unico modo que consigo para resolver, é usando a tabela de valores próximos do x usando calculadora. Alguém sabe fazer de outro modo?

h(x)= {\frac{\sqrt{x}-\sqrt{5}}{\sqrt{x+5}-\sqrt{10}} se x for diferente de 5, L\ se\ x=5

Usando a tabela calculando valores próximos a resposta dá 1,4142 = \sqrt{2}.


Dica

Multiplique o numerador e o denominador por \left(\sqrt{x} + \sqrt{5}\right)\left(\sqrt{x+5} + \sqrt{10}\right) :

\dfrac{\sqrt{x}-\sqrt{5}}{\sqrt{x+5}-\sqrt{10}} = \dfrac{\left(\sqrt{x} - \sqrt{5}\right)\left(\sqrt{x} + \sqrt{5}\right)\left(\sqrt{x+5} + \sqrt{10}\right)}{\left(\sqrt{x+5} - \sqrt{10}\right)\left(\sqrt{x} + \sqrt{5}\right)\left(\sqrt{x+5} + \sqrt{10}\right)}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Continuidades

Mensagempor Kabection » Sex Mar 30, 2012 22:38

\dfrac{\sqrt{x}-\sqrt{5}}{\sqrt{x+5}-\sqrt{10}} = \dfrac{\left(\sqrt{x} - \sqrt{5}\right)\left(\sqrt{x} + \sqrt{5}\right)\left(\sqrt{x+5} + \sqrt{10}\right)}{\left(\sqrt{x+5} - \sqrt{10}\right)\left(\sqrt{x} + \sqrt{5}\right)\left(\sqrt{x+5} + \sqrt{10}\right)}

Fica:

\frac{x-5}{x+5-10} * \frac{\sqrt{x+5}+\sqrt{10}}{\sqrt{x}+\sqrt{5}}

Cortando (x-5) com (x+5-10) fica:

\frac{\sqrt{x+5}+\sqrt{10}}{\sqrt{x}+\sqrt{5}}

Substituindo x=5 fica:

\frac{\sqrt{10}+\sqrt{10}}{\sqrt{5}+\sqrt{5}} = \frac{2\sqrt{10}}{2\sqrt{5}}

Cortando 2 e usando a propriedade da divisão das raízes:

\sqrt{10/5} = \sqrt{2}

Valeu Luiz Aquino.
Kabection
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Jan 16, 2012 15:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.