• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integração por partes] Não consigo chegar no resultado.

[Integração por partes] Não consigo chegar no resultado.

Mensagempor renanrdaros » Ter Mar 20, 2012 16:32

Um foguete acelera pela queima do combustível a bordo; assim, sua massa diminui com o tempo. Suponha que a massa inicial do foguete no lançamento (incluindo o combustível) seja m, que o combustível seja consumido a uma taxa r, e que os gases de exaustão sejam ejetados a uma velocidade constante {v}_{e} (relativa ao foguete). Um modelo para a velocidade do foguete a um tempo t é dado pela seguinte equação:

v(t) = -gt - {v}_{e} ln\frac{m - rt}{m}

onde g é a aceleração da gravidade, e t não é muito grande. Se g = 9.8 m/s², m = 30000 kg, r = 160 kg/s e {v}_{e} = 3000 m/s, ache a altitude do foguete 1 minuto após o lançamento.




\int_{}^{} \left(-9.8t - 3000ln\frac{375 - 2t}{375} \right) dt = -4.9{t}^{2} + 1500\left[\left(375 - 2t \right)ln\left(\frac{375 - 2t}{375} \right)-\left(375 - 2t \right) \right] + c

Resolvendo a integral indefinida cheguei no resultado acima, mas ao aplicar os limites de integração o resultado final dá sempre negativo.
Editado pela última vez por renanrdaros em Qua Mar 21, 2012 01:33, em um total de 3 vezes.
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: [Integração por partes] Não consigo chegar no resultado.

Mensagempor LuizAquino » Ter Mar 20, 2012 20:51

renanrdaros escreveu:Um foguete acelera pela queima do combustível a bordo; assim, sua massa diminui com o tempo. Suponha que a massa inicial do foguete no lançamento (incluindo o combustível) seja m, que o combustível seja consumido a uma taxa r, e que os gases de exaustão sejam ejetados a uma velocidade constante {v}_{e} (relativa ao foguete). Um modelo para a velocidade do foguete a um tempo t é dado pela seguinte equação:

v(t) = -gt - {v}_{e} ln\frac{m - rt}{m}

onde g é a aceleração da gravidade, e t não é muito grande. Se g = 9.8 m/s², m = 30000 kg, r = 160 kg/s e {v}_{e} = 3000 m/s, ache a altitude do foguete 1 minuto após o lançamento.


renanrdaros escreveu:\int_{}^{} \left(-9.8t - 3000ln\frac{30000 - 2t}{30000} \right) dt = -4.9{t}^{2} + 1500\left[\left(375 - 2t \right)ln\left(\frac{375 - 2t}{375} \right)-\left(375 - 2t \right) \right] + c

Resolvendo a integral indefinida cheguei no resultado acima, mas ao aplicar os limites de integração o resultado final dá sempre negativo.


1) Note que r = 160 kg/s, mas você substituiu por 2. Reveja os cálculos da integral indefinida.

2) Qual é o intervalo de integração que você está aplicando? Você está tomando o cuidado de colocar o intervalo de integração em segundos?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Integração por partes] Não consigo chegar no resultado.

Mensagempor renanrdaros » Qua Mar 21, 2012 01:43

LuizAquino escreveu:1) Note que r = 160 kg/s, mas você substituiu por 2. Reveja os cálculos da integral indefinida.

2) Qual é o intervalo de integração que você está aplicando? Você está tomando o cuidado de colocar o intervalo de integração em segundos?



1 - Já editei. Os cálculos estavam certos; eu errei ao digitar aqui no fórum. Na verdade eu fatorei e simplifiquei o logaritmando.

2 - Estou usando o intervalo [0; 60s].
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: [Integração por partes] Não consigo chegar no resultado.

Mensagempor nietzsche » Qua Mar 21, 2012 02:05

Analisando a integral, não precisa usar integração por partes. Uma mudança de váriavel é suficiente. Lembrando que essa integral pode ser separada na soma de duas e "chamando" o argumento do logaritmo de uma nova variável u(t), vai facilitar.
Um site pra testar se suas contas estão certas é:
http://www.wolframalpha.com/
Ele calcula integrais.
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Integração por partes] Não consigo chegar no resultado.

Mensagempor renanrdaros » Qua Mar 21, 2012 09:17

nietzsche,

Eu já havia comparado o meu resultado com o resultado obtido pelo wolfram alpha. A integração está correta, o problema é que, ao aplicar os limites, não chego ao resultado esperado.
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: [Integração por partes] Não consigo chegar no resultado.

Mensagempor LuizAquino » Qua Mar 21, 2012 12:10

renanrdaros escreveu:Eu já havia comparado o meu resultado com o resultado obtido pelo wolfram alpha. A integração está correta, o problema é que, ao aplicar os limites, não chego ao resultado esperado.


Qual o valor que você está chegando?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Integração por partes] Não consigo chegar no resultado.

Mensagempor renanrdaros » Qua Mar 21, 2012 13:10

\int_{0}^{60} v(t) dt =  382500ln(\frac{255}{375}) + 162360 = 14884.1


Refiz os cálculos e consegui chegar ao resultado correto!
Obrigado pela ajuda!
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59