• Anúncio Global
    Respostas
    Exibições
    Última mensagem

função simples de derivada

função simples de derivada

Mensagempor miumatos » Dom Mar 18, 2012 13:06

Bom dia pessoal, preciso de uma ajuda para entender a seguinte função:
(fg)"= gf"+2f'g'+fg"

sei que o resultado é f"g+2f'g'+fg e a questão pede para provar derivando até a segunda ordem que uma é igual a outra.
já entendo como derivar com numeros mas não consegui associar com este tipo de função.

Agradeço desde já.
miumatos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mar 18, 2012 12:33
Formação Escolar: GRADUAÇÃO
Área/Curso: sistemas de informação
Andamento: cursando

Re: função simples de derivada

Mensagempor LuizAquino » Dom Mar 18, 2012 13:18

miumatos escreveu:Bom dia pessoal, preciso de uma ajuda para entender a seguinte função:
(fg)"= gf"+2f'g'+fg"

sei que o resultado é f"g+2f'g'+fg e a questão pede para provar derivando até a segunda ordem que uma é igual a outra.
já entendo como derivar com numeros mas não consegui associar com este tipo de função.


Você deseja calcular a segunda derivada do produto entre duas funções. Isto é, você deseja calcular (fg)^{\prime\prime} .

Efetuar esse cálculo é o mesmo que fazer [(fg)^{\prime}]^{\prime} .

Aplicando a regra do produto para derivadas, temos que:

(fg)^{\prime} = f^\prime g + f g^\prime

Sendo assim, temos que:

(fg)^{\prime\prime} = [(fg)^{\prime}]^{\prime}

(fg)^{\prime\prime} = (f^\prime g + f g^\prime)^{\prime}

Aplicando agora a regra da soma para derivadas, temos que:

(fg)^{\prime\prime}  = (f^\prime g)^\prime + (f g^\prime)^{\prime}

Aplicando novamente a regra do produto para derivadas, temos que:

(fg)^{\prime\prime}  = [(f^\prime)^\prime g  + f^\prime g^\prime] + [f^\prime g^\prime + f (g^\prime)^\prime]

(fg)^{\prime\prime}  = f^{\prime\prime} g  + 2f^\prime g^\prime + f g^{\prime\prime}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: função simples de derivada

Mensagempor miumatos » Dom Mar 18, 2012 15:29

:y:
ok, entendi.
Muito obrigado.
miumatos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mar 18, 2012 12:33
Formação Escolar: GRADUAÇÃO
Área/Curso: sistemas de informação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.