por Giu » Qua Fev 08, 2012 16:08
não tenho nenhum resolvido com módulo e pode ser que caia na prova com módulo.
Fiz dessa maneira: estabeleci uma condição para

=x , quando x>0 e

= (x+1), quando x>-1,
e

= -x, quando x<0 e

= -(x+1), quando x< -1.
Obtendo dois resultados.
Alguma dica aí
-
Giu
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Fev 08, 2012 15:38
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Quimica Licenciatura
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral] Resolver Integral definida com trigonometria
por rodrigoboreli » Dom Set 07, 2014 01:02
- 1 Respostas
- 4348 Exibições
- Última mensagem por adauto martins

Sex Out 17, 2014 12:39
Cálculo: Limites, Derivadas e Integrais
-
- Integral do módulo?
por Questioner » Dom Mai 16, 2010 18:15
- 2 Respostas
- 32702 Exibições
- Última mensagem por LuizAquino

Qui Abr 21, 2011 09:38
Cálculo: Limites, Derivadas e Integrais
-
- Integral com módulo.
por adecris » Sex Nov 11, 2011 13:01
- 1 Respostas
- 4431 Exibições
- Última mensagem por LuizAquino

Sex Nov 11, 2011 17:12
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Módulo
por iagoyotsui » Ter Set 24, 2013 19:18
- 1 Respostas
- 2119 Exibições
- Última mensagem por Russman

Ter Set 24, 2013 21:43
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo Integral] Integral Definida
por ARCS » Sáb Fev 02, 2013 21:37
- 2 Respostas
- 3684 Exibições
- Última mensagem por e8group

Sáb Fev 02, 2013 22:13
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.