por bernardo1744 » Seg Nov 28, 2011 19:34
boa tarde pessoal. eu queria muito tirar uma dúvida sobre uma questão de prova . na minha prova foi dada a seguinte função [CÁLCULO 1] ache F(x)= e^(x^2-1) , e estava pedindo pra achar as assíntotas , os pontos críticos e os pontos de inflexão. me ajudem por favor. desde já grato ^^
-
bernardo1744
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Nov 28, 2011 19:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engneharia meCânica
- Andamento: cursando
por LuizAquino » Seg Nov 28, 2011 20:18
bernardo1744 escreveu:boa tarde pessoal. eu queria muito tirar uma dúvida sobre uma questão de prova . na minha prova foi dada a seguinte função [CÁLCULO 1] ache F(x)= e^(x^2-1) , e estava pedindo pra achar as assíntotas , os pontos críticos e os pontos de inflexão. me ajudem por favor. desde já grato ^^
Quais foram as suas tentativas?
Por favor, informe onde está exatamente a sua dúvida.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por bernardo1744 » Seg Nov 28, 2011 20:20
minha dúvida é q eu não sei achar assintota em função desse tipo e a do ponto de inflexão eu queria ver qnto que dava sabe

-
bernardo1744
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Nov 28, 2011 19:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engneharia meCânica
- Andamento: cursando
por LuizAquino » Ter Nov 29, 2011 10:16
bernardo1744 escreveu:minha dúvida é q eu não sei achar assintota em função desse tipo e a do ponto de inflexão eu queria ver qnto que dava sabe

A função

não tem assíntotas. Para uma explicação sobre assíntotas, vide o tópico:
assintotaviewtopic.php?f=120&t=6002Quanto aos pontos de inflexão, é necessário estudar o sinal da segunda derivada de
f.
Calculando as derivadas, temos que:

Note que tanto o termo

quanto o termo

são sempre positivos e não nulos. Portanto, temos que

para todo x no domínio de

. Logo, o gráfico de
f não tem ponto de inflexão e sua concavidade é sempre para cima.
A figura abaixo ilustra o gráfico de
f.

- gráfico.png (6.78 KiB) Exibido 1385 vezes
ObservaçãoAnalisando a primeira derivada de
f, temos que x = 0 é um ponto crítico.
Além disso, para x < 0 temos

(ou seja,
f decresce no intervalo

).
Por outro lado, para x > 0 temos

(ou seja,
f cresce no intervalo

).
Observando o gráfico da função
f ilustrado acima, note como essas informações são confirmadas.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Me ajudem
por geriane » Qui Abr 22, 2010 16:01
- 1 Respostas
- 2840 Exibições
- Última mensagem por Molina

Qui Abr 22, 2010 20:48
Desafios Fáceis
-
- me ajudem ai !!
por weverton » Ter Jun 15, 2010 23:45
- 1 Respostas
- 1644 Exibições
- Última mensagem por Mathmatematica

Qua Jun 16, 2010 01:18
Sistemas de Equações
-
- me ajudem ai!!!
por weverton » Qui Jul 08, 2010 17:15
- 2 Respostas
- 8416 Exibições
- Última mensagem por Lucio Carvalho

Qui Jul 08, 2010 19:50
Estatística
-
- me ajudem
por weverton » Qui Out 07, 2010 17:34
- 1 Respostas
- 1667 Exibições
- Última mensagem por MarceloFantini

Qui Out 07, 2010 18:07
Geometria Analítica
-
- me ajudem
por weverton » Seg Nov 08, 2010 16:11
- 7 Respostas
- 3969 Exibições
- Última mensagem por MarceloFantini

Qua Nov 10, 2010 01:43
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.