• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral por substituiçao trigonometrica 3

integral por substituiçao trigonometrica 3

Mensagempor beel » Dom Nov 27, 2011 18:24

nessa integral \int_{}^{}\frac{2dt}{\sqrt[]{t}+ 4t\sqrt[]{t}}
tentei colocar o denominador como uma soma pra fazer a substituiçao trigonometrica, e ficou assim:
\int_{}^{}\frac{2dt d\theta}{\sqrt[]{t}(1+ 4t)}
...
travei de novo e cheguei ate esse resultado
\int_{}^{}\frac{d\theta}{4tg\theta^2}
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: integral por substituiçao trigonometrica 3

Mensagempor LuizAquino » Seg Nov 28, 2011 16:24

beel escreveu:essa integral \int_{}^{}\frac{2dt}{\sqrt[]{t}+ 4t\sqrt[]{t}}
tentei colocar o denominador como uma soma pra fazer a substituiçao trigonometrica, e ficou assim:
\int_{}^{}\frac{2dt d\theta}{\sqrt[]{t}(1+ 4t)}
...
travei de novo e cheguei ate esse resultado
\int_{}^{}\frac{d\theta}{4tg\theta^2}


Para conferir sua resolução, basta seguir os procedimentos abaixo.

  1. Acesse a página: http://www.wolframalpha.com/
  2. No campo de entrada, digite:
    Código: Selecionar todos
    integrate 2/(sqrt(t) + (4t)*sqrt(t)) dt
  3. Clique no botão de igual ao lado do campo de entrada.
  4. Após a integral ser calculada, clique no botão "Show steps" ao lado do resultado.
  5. Pronto! Agora basta estudar a resolução e comparar com a sua.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: integral por substituiçao trigonometrica 3

Mensagempor beel » Seg Nov 28, 2011 16:35

Gostei do site,uso pra conferir respostas mais diretas, mas essas que eu posto aqui nao consegui resolver olhando o site e gostaria de ajuda, voces sempre sugerem esse site, e sei que ele existe agora, e se ainda sim postei minha duvida quer dizer que nao resolveu, mas ok, obrigada...
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: integral por substituiçao trigonometrica 3

Mensagempor LuizAquino » Seg Nov 28, 2011 16:44

beel escreveu:Gostei do site, uso pra conferir respostas mais diretas, mas essas que eu posto aqui nao consegui resolver olhando o site e gostaria de ajuda, voces sempre sugerem esse site, e sei que ele existe agora, e se ainda sim postei minha duvida quer dizer que nao resolveu, mas ok, obrigada...


Seguindo os procedimentos acima, obtemos o texto abaixo. Em que parte você tem dificuldade?

Possible intermediate steps:

\int \frac{2}{\sqrt{t} + 4 t^\frac{3}{2}} dt

Factor out constants:

= 2 \int \frac{1}{4 t^\frac{3}{2}+\sqrt{t}} dt

For the integrand \frac{1}{4 t^\frac{3}{2}+\sqrt{t}} , substitute u = \sqrt{t} and du = \frac{1}{2 \sqrt{t}} dt :

= 4 \int \frac{u}{4 u^3+u} du

For the integrand \frac{u}{4 u^3+u}, cancel common terms in the numerator and denominator:

= 4 \int \frac{1}{4 u^2+1} du

The integral of \frac{1}{4 u^2+1} is \frac{1}{2} \tan^{-1}(2 u) :

= 2 \tan^{-1}(2 u) + \textrm{constant}

Substitute back for u = \sqrt{t} :

= 2 \tan^{-1}\left(2 \sqrt{t}\right)+\textrm{constant}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59