• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] Me ajudem!!

[Limites] Me ajudem!!

Mensagempor carvalhothg » Qua Nov 23, 2011 12:04

Como resolvo este limite para encontrar os valores de a e b. Não estou conseguindo, sempre chego na indeterminação de \infty-\infty

- Se f(x)=\frac{3a{x}^{2}-5}{2-x}+bx-5+a, calcule a e b de modo que:



1) \lim_{x\rightarrow\infty}f(x)=2



2) \lim_{x\rightarrow-\infty}=+\infty
carvalhothg
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Dom Set 04, 2011 18:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Limites] Me ajudem!!

Mensagempor LuizAquino » Qua Nov 23, 2011 14:22

carvalhothg escreveu:Como resolvo este limite para encontrar os valores de a e b. Não estou conseguindo, sempre chego na indeterminação de \infty-\infty


carvalhothg escreveu: Se f(x)=\frac{3a{x}^{2}-5}{2-x}+bx-5+a, calcule a e b de modo que:


carvalhothg escreveu:1) \lim_{x\to \infty}f(x)=2


Note que:

\lim_{x\to \infty}f(x) = \lim_{x\to \infty} \frac{3a{x}^{2}-5}{2-x}+bx-5+a

= \lim_{x\to \infty} \frac{3a{x}^{2}-5 + (2-x)(bx-5+a)}{2-x}

= \lim_{x\to \infty} \frac{(3a - b)x^2 + (- a + 2b + 5)x + 2a - 15}{2-x}

Se 3a - b = 0, então temos que:

\lim_{x\to \infty} \frac{(- a + 2b + 5)x + 2a - 15}{2-x} = \lim_{x\to \infty} \frac{[(- a + 2b + 5)x + 2a - 15]:x}{(2-x):x}

= \lim_{x\to \infty} \frac{(- a + 2b + 5) + \frac{2a - 15}{x}}{\frac{2}{x}-1}

= \frac{(- a + 2b + 5) + 0}{0-1} = a - 2b - 5

Basta então tomar a e b tais que:

\begin{cases}
3a - b = 0 \\
a - 2b - 5 = 2
\end{cases}

Portanto, para a = -7/5 e b = -21/5 temos que:

\lim_{x\to \infty}f(x)=2

carvalhothg escreveu:2) \lim_{x\to -\infty}f(x) =+\infty


Se a = 0, então temos que:

\lim_{x\to -\infty} \frac{3\cdot 0 \cdot x^2-5}{2-x}+bx-5+0 = \lim_{x\to \infty} \frac{-5}{2-x} + bx - 5

= \lim_{x\to -\infty} \frac{-5}{2-x} + \lim_{x\to -\infty} bx - 5

= 0 + \lim_{x\to -\infty} bx - 5

= \lim_{x\to -\infty} bx - 5

Note que para qualquer número b que seja negativo (isto é, b < 0), temos que:

\lim_{x\to -\infty} bx - 5 = +\infty

Portanto, basta tomar a = 0 e b < 0 para que:

\lim_{x\to -\infty} f(x) = +\infty
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}