• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[calculo] limite - exponencial

[calculo] limite - exponencial

Mensagempor beel » Dom Out 30, 2011 17:51

\lim_{x\rightarrow\infty}[(e^x + x)]^\frac{2}{x}

nesse limite, a função exponencial por ser continua "dá passagem' pro limite?
fiz baseado nisso e meu resultado deu e²
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] limite - exponencial

Mensagempor LuizAquino » Dom Out 30, 2011 18:24

beel escreveu:\lim_{x\to\infty} \left(e^x + x\right)^\frac{2}{x}

nesse limite, a função exponencial por ser continua "dá passagem' pro limite?
fiz baseado nisso e meu resultado deu e²


O resultado desse limite é esse. Mas envie o seu desenvolvimento para que possamos verificar se ele está correto.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [calculo] limite - exponencial

Mensagempor beel » Dom Out 30, 2011 18:47

\lim_{x\rightarrow\infty}exp[ln( e^x + x)]^\frac{2}{x}=
exp (\lim_{x\rightarrow\infty} [ln(e^x + x)]\frac{2}{x}=
exp (\lim_{x\rightarrow\infty} [ln(e^x + x)\frac{x}{2}=
exp (\lim_{x\rightarrow\infty} (\frac{[ln(e^x + x)]\prime}{(\frac{x}{2}\prime)}=
exp (\lim_{x\rightarrow\infty} \frac{\frac{e^x + 1}{e^x + x}}{\frac{1}{2}})=
exp (\lim_{x\rightarrow\infty}\frac{2(e^x + 1)}{e^x + x})=

continua...
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] limite - exponencial

Mensagempor beel » Dom Out 30, 2011 18:58

exp (\lim_{x\rightarrow\infty}\frac{2(e^x + 1)\prime}{(e^x + x)\prime}) =
exp (\lim_{x\rightarrow\infty}\frac{2e^x}{(e^x + 1)}=
exp (\lim_{x\rightarrow\infty}\frac{(2e^x)\prime}{(e^x + 1)\prime})=
exp (\lim_{x\rightarrow\infty}\frac{(2e^x)}{(e^x)})=
exp (\lim_{x\rightarrow\infty} 2)=
exp (2) =
e^2
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] limite - exponencial

Mensagempor LuizAquino » Dom Out 30, 2011 19:02

beel escreveu:\lim_{x\rightarrow\infty}exp[ln( e^x + x)]^\frac{2}{x} = exp (\lim_{x\rightarrow\infty} [ln(e^x + x)]\frac{2}{x} = exp (\lim_{x\rightarrow\infty} [ln(e^x + x)\frac{x}{2}= exp (\lim_{x\rightarrow\infty} (\frac{[ln(e^x + x)]\prime}{(\frac{x}{2}\prime)} = exp (\lim_{x\rightarrow\infty} \frac{\frac{e^x + 1}{e^x + x}}{\frac{1}{2}})= exp (\lim_{x\rightarrow\infty}\frac{2(e^x + 1)}{e^x + x}) =

continua...

exp (\lim_{x\rightarrow\infty}\frac{2(e^x + 1)\prime}{(e^x + x)\prime}) = exp (\lim_{x\rightarrow\infty}\frac{2e^x}{(e^x + 1)} = exp (\lim_{x\rightarrow\infty}\frac{(2e^x)\prime}{(e^x + 1)\prime})= exp (\lim_{x\rightarrow\infty}\frac{(2e^x)}{(e^x)}) =
exp (\lim_{x\rightarrow\infty} 2)= exp (2) = e^2


Ok. Basicamente você começou usando a propriedade e^{\ln u} = u (com u > 0).

Uma outra forma de fazer segue abaixo.

Note que para x>0, temos que \left(e^x + x\right)^\frac{2}{x} > 0 .

Vamos supor que esse limite seja igual a L. Então deve ocorrer L>0 . Sendo assim, podemos escrever:

L = \lim_{x\to\infty} \left(e^x + x\right)^\frac{2}{x}

\ln L = \ln \lim_{x\to\infty} \left(e^x + x\right)^\frac{2}{x}

Como a função logaritmo natural é contínua em todo o seu domínio, ela pode "entrar" nesse limite.

\ln L = \lim_{x\to\infty} \ln \left(e^x + x\right)^\frac{2}{x}

\ln L = \lim_{x\to\infty}  \frac{2}{x} \ln \left(e^x + x\right)

\ln L = \lim_{x\to\infty}   \frac{\ln \left(e^x + x\right)}{\frac{x}{2}}

\ln L = \lim_{x\to\infty}   \frac{\left[\ln \left(e^x + x\right)\right]^\prime}{\left(\frac{x}{2}\right)^\prime}

\ln L = \lim_{x\to\infty}   \frac{\frac{e^x+1}{e^x + x}}{\frac{1}{2}}

\ln L = 2\lim_{x\to\infty}   \frac{e^x+1}{e^x + x}

\ln L = 2\lim_{x\to\infty}   \frac{\left(e^x+1\right)^\prime}{\left(e^x+x\right)^\prime}

\ln L = 2\lim_{x\to\infty}   \frac{e^x}{e^x + 1}

\ln L = 2\lim_{x\to\infty}   \frac{\left(e^x\right):e^x}{\left(e^x + 1\right):e^x}

\ln L = 2\lim_{x\to\infty}   \frac{1}{1 + \frac{1}{e^x}}

\ln L = 2 \cdot \frac{1}{1+0}

L = e^2
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.