• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[calculo II integral]

[calculo II integral]

Mensagempor paula luna » Seg Ago 22, 2011 21:52

- Substituiçao trigonometrica -

Olha nao to conseguindo achar a resposta certa para esta questao.

\int_{}^{}\frac{dx}{{x}^{2}\sqrt[2]{{x}^{2}-5}}

Bem eu fiz as devidas subsituiçoes, e resolvi como podem ver abaixo

substituiçoes:
\sqrt[2]{{x}^{2}-5} = \sqrt[2]{5}.tg(\theta)
x = \sqrt[2]{5}.sec(\theta)
dx = \sqrt[2]{5}.sec(\theta).tg(\theta).d\theta

Resoluçao:
\int_{}^{}\frac{\sqrt[2]{5}.sec(\theta).tg(\theta).d\theta}{5.{sec}^{2}(\theta).\sqrt[2]{5}.tg(\theta)} = \frac{1}{5}\int_{}^{}\frac{1}{sec(\theta)} = \frac{1}{5}sen(\theta) = \frac{\sqrt[2]{{x}^{2}-5}}{5}+ C

Resposta certa:
\frac{\sqrt[2]{{x}^{2}-5}}{5x}+ C

Ou seja, para resumir, da onde veio aquele x no denominador?
:y: :y: :y: :y:
paula luna
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Mai 05, 2011 21:56
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo II integral]

Mensagempor LuizAquino » Ter Ago 23, 2011 08:24

Você fez a substituição x = \sqrt{5} \sec \theta .

Desenvolvendo essa equação para aparecer o seno do ângulo, obtemos \textrm{sen}\,\theta = \frac{\sqrt{x^2-5}}{x} .

Você deve ter se atrapalhado nesse desenvolvimento. Envie a sua resolução dessa parte para que possamos identificar o problema.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [calculo II integral]

Mensagempor paula luna » Ter Ago 23, 2011 15:58

Nossa! Claro! pura desatençao... mas é perdoavel,, trigonometria por vezes torna-se uma coisa extremamente tediosa com suas inumeras formas de simplificar ( ou de dificultar ). Toda hora que acho uma resposta, tenho que fazer varias simplificaçoes para dai entao saber se esta ou nao certa. Mas chega a ser um passatempo bem ... divertido , "Aprecie com moderaçao" :-D

Obg todos que leram e ao Luiz que sempre responde nossas duvidas por mais "idiotas" que possam ser (parecer).

Obs.: Desculpa os erros de portugues, ha um motivo significante para escolher a area da eng. (nao que isso explique os erros *-) )
paula luna
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Mai 05, 2011 21:56
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo II integral]

Mensagempor LuizAquino » Ter Ago 23, 2011 19:11

paula luna escreveu:Desculpa os erros de portugues, ha um motivo significante para escolher a area da eng. (nao que isso explique os erros *-) )


Com certeza o fato de escolhermos a área de exatas não é desculpa para descuidar do Português.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.