por leandro_aur » Sáb Ago 13, 2011 16:14
Galera, bom dia.
Eu não estou conseguindo provar o que pede aqui no livro. Será que alguém poderia dar uma olhada?
(Stewart - Cálculo 2 volume 6 pág 899, Exercício 23)
Se

, mostre que

.
Será que alguém poderia me ajudar?
Abraços
-
leandro_aur
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Out 24, 2010 17:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencia e Tecnologia
- Andamento: cursando
por LuizAquino » Sáb Ago 13, 2011 20:39
Muito provavelmente você está se atrapalhando com as derivadas parciais.
Envie a sua resolução para que possamos identificar o problema.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por leandro_aur » Sáb Ago 13, 2011 20:50
Olá, creio que não, pois joguei a derivada no wolfram e bateu com a minha, queria conferir com alguém se tem inconsistencia no exercício mesmo.
-
leandro_aur
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Out 24, 2010 17:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencia e Tecnologia
- Andamento: cursando
por LuizAquino » Sáb Ago 13, 2011 21:23
leandro_aur escreveu:Olá, creio que não, pois joguei a derivada no wolfram e bateu com a minha, queria conferir com alguém se tem inconsistencia no exercício mesmo.
Não há inconsistência no exercício.
Temos que:


Somando as duas últimas equações:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problemas Quentes do Livro do James Stewart
por ARCS » Dom Fev 12, 2012 00:11
- 1 Respostas
- 3637 Exibições
- Última mensagem por fraol

Dom Fev 12, 2012 10:44
Cálculo: Limites, Derivadas e Integrais
-
- Teorema de Stewart - 2ª Fórmula
por matheus_frs1 » Dom Nov 02, 2014 19:54
- 3 Respostas
- 2533 Exibições
- Última mensagem por Russman

Seg Nov 03, 2014 00:10
Geometria Plana
-
- Possível erro de digitação no Stewart 5ª edição!
por ravi » Sex Jan 18, 2013 03:11
- 2 Respostas
- 2964 Exibições
- Última mensagem por ravi

Sex Jan 18, 2013 13:15
Cálculo: Limites, Derivadas e Integrais
-
- livro de matemática
por DanielFerreira » Sex Mar 26, 2010 12:54
- 1 Respostas
- 3212 Exibições
- Última mensagem por Cleyson007

Sex Mar 26, 2010 17:23
Piadas
-
- PA Livro de Dante
por Joana Gabriela » Seg Ago 09, 2010 10:37
- 1 Respostas
- 3049 Exibições
- Última mensagem por Cleyson007

Seg Ago 09, 2010 14:40
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.