• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada: Livro Stewart

Derivada: Livro Stewart

Mensagempor leandro_aur » Sáb Ago 13, 2011 16:14

Galera, bom dia.
Eu não estou conseguindo provar o que pede aqui no livro. Será que alguém poderia dar uma olhada?

(Stewart - Cálculo 2 volume 6 pág 899, Exercício 23)

Se z=xy+x{e}^{y/x} , mostre que x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}=xy+z.

Será que alguém poderia me ajudar?

Abraços
leandro_aur
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Out 24, 2010 17:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia e Tecnologia
Andamento: cursando

Re: Derivada: Livro Stewart

Mensagempor LuizAquino » Sáb Ago 13, 2011 20:39

Muito provavelmente você está se atrapalhando com as derivadas parciais.

Envie a sua resolução para que possamos identificar o problema.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivada: Livro Stewart

Mensagempor leandro_aur » Sáb Ago 13, 2011 20:50

Olá, creio que não, pois joguei a derivada no wolfram e bateu com a minha, queria conferir com alguém se tem inconsistencia no exercício mesmo.
leandro_aur
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Out 24, 2010 17:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia e Tecnologia
Andamento: cursando

Re: Derivada: Livro Stewart

Mensagempor LuizAquino » Sáb Ago 13, 2011 21:23

leandro_aur escreveu:Olá, creio que não, pois joguei a derivada no wolfram e bateu com a minha, queria conferir com alguém se tem inconsistencia no exercício mesmo.

Não há inconsistência no exercício.

Temos que:
\frac{\partial z}{\partial x} =  y + e^{y/x} - \frac{y}{x}e^{y/x} \Rightarrow x\frac{\partial z}{\partial x} =  xy + xe^{y/x} - ye^{y/x}

\frac{\partial z}{\partial y} =  x + e^{y/x} \Rightarrow y\frac{\partial z}{\partial y} =  xy + ye^{y/x}

Somando as duas últimas equações:

x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} =  xy + xe^{y/x} + xy \Rightarrow x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = xy + z
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?