• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Aplicacao de Limites

Aplicacao de Limites

Mensagempor aline_n » Qui Jul 14, 2011 16:24

Duas empresas foram contratadas para realizar um estudo ambientalem um certo municipio. A empresa A relevou que a concentracao media de moxido de carbono em funcao do tempo t é dado pela lei de formacao

[/tex]

A longo prazo quai das concentracoes medias de monoxido de carbono sera maior {C}_{1} ou {C}_{2}


Tentei responder assim:
{C}_{1}\left(t \right)= \sqrt{t+\sqrt{t}} - \sqrt{t -\sqrt{t}}

{C}_{1}\left(t \right)= \sqrt{t} - \sqrt{t}

{C}_{1}\left(t \right)= 0



??????
aline_n
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Abr 28, 2011 09:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: Aplicacao de Limites

Mensagempor Molina » Qui Jul 14, 2011 16:34

Boa tarde.

Esta passagem aqui não está correta:

aline_n escreveu:{C}_{1}\left(t \right)= \sqrt{t+\sqrt{t}} - \sqrt{t -\sqrt{t}}

{C}_{1}\left(t \right)= \sqrt{t} - \sqrt{t}


Você está considerando que \sqrt{t+\sqrt{t}} = \sqrt{t-\sqrt{t}} e isso não é verdade.

Veja que, por exemplo, \sqrt{1+\sqrt{1}} = \sqrt{2} \neq 0 = \sqrt{1-\sqrt{1}}


Perceba que o assunto é aplicação de limite. Ou seja, em ambas a função faça o limites dela tendendo ao infinito (t \rightarrow \infty)

Qualquer dúvida informe! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Aplicacao de Limites

Mensagempor aline_n » Qui Jul 14, 2011 16:51

Posso multiplicar ambas as funçoes pelo seus conjugados ????
aline_n
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Abr 28, 2011 09:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: Aplicacao de Limites

Mensagempor Molina » Qui Jul 14, 2011 16:59

Confirmando as funções:

{C}_{1}\left(t \right)= \sqrt{t+\sqrt{t}} - \sqrt{t -\sqrt{t}}

e

{C}_{2}\left(t \right)=\sqrt{\frac{7t^2}{4+5}}


Por que na segunda, a parte do denominados já não está somada?
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.