por Isabela Sa » Ter Jul 12, 2011 11:46
Sendo:



tenho duvida se esta certo ou n?
pq eu vi o video de um professor do forum
q tava com valor diferente ai n intendi
http://www.youtube.com/watch?v=KL08c3ao ... ure=relmfuobrigada
-
Isabela Sa
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Qui Jun 23, 2011 12:24
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Ensino Médio
- Andamento: cursando
por LuizAquino » Ter Jul 12, 2011 14:55
O que você fez está errado.
Para derivar a função

é necessário usar a
regra do quociente. Sendo assim, temos que:

Se você quiser calcular a segunda derivada, então terá que aplicar a
regra do quociente novamente. Ou seja, temos que:
![f^{\prime\prime}(x) = \frac{\left(x^2 - 4\right)^\prime \left(x^2 + 4\right)^2 - \left(x^2 - 4\right)\left[\left(x^2 + 4\right)^2\right]^\prime}{\left[\left(x^2 + 4\right)^2\right]^2} = \frac{-2x^3+24x}{\left(x^2 + 4\right)^3} f^{\prime\prime}(x) = \frac{\left(x^2 - 4\right)^\prime \left(x^2 + 4\right)^2 - \left(x^2 - 4\right)\left[\left(x^2 + 4\right)^2\right]^\prime}{\left[\left(x^2 + 4\right)^2\right]^2} = \frac{-2x^3+24x}{\left(x^2 + 4\right)^3}](/latexrender/pictures/c7876d5870608339becbe6294b1758d4.png)
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Isabela Sa » Qua Jul 13, 2011 00:35
n intendi o pq de usar essa regra do quociente
derivando normalmente n da certo n?
thanks
-
Isabela Sa
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Qui Jun 23, 2011 12:24
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Ensino Médio
- Andamento: cursando
por Paulo4114 » Qua Jul 13, 2011 02:33
Olá!
Você pode resolver este exercicio de 2 formas. A primeira e mais simples é utilizando a própria regra do quociente ou derivada do quociente.
Mas se você não percebeu o porquê de usa-la, então, terá de adquirir mais conceitos.
Não posto aqui porque tornar-se-ia muito extenso, por isso:
Visite: aprendermmatematica.blogspot.com/
ou envie email para:
isistelv@gmail.compara que possamos saber que está a procura de compreender a resolução deste(s) exercicios.
Obrigado e bom estudo
-
Paulo4114
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Jul 13, 2011 02:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eletronica
- Andamento: formado
por Molina » Qua Jul 13, 2011 08:16
Bom dia, Isabela.
Isabela Sa escreveu:n intendi o pq de usar essa regra do quociente
derivando normalmente n da certo n?
thanks
Você está se confundindo. A derivada do quociente não é o quociente da derivada:

Procure no seu livro (ou até mesmo na internet) sobre a
Regra do Produto.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por LuizAquino » Qua Jul 13, 2011 10:07
Na
vídeo-aula "12. Cálculo I - Regras Operatórias das Derivadas" é explicado essa regra.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada] Dúvida ao calcular uma derivada...
por dileivas » Ter Mai 01, 2012 09:54
- 2 Respostas
- 2266 Exibições
- Última mensagem por dileivas

Ter Mai 01, 2012 17:18
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] Duvida em derivada da definição.
por paulohenrique_ » Dom Dez 09, 2012 16:05
- 1 Respostas
- 1937 Exibições
- Última mensagem por young_jedi

Dom Dez 09, 2012 18:12
Cálculo: Limites, Derivadas e Integrais
-
- Dúvida em derivada
por luiz3107 » Seg Ago 23, 2010 02:50
- 2 Respostas
- 1925 Exibições
- Última mensagem por luiz3107

Seg Ago 23, 2010 15:15
Cálculo: Limites, Derivadas e Integrais
-
- Duvida Derivada.
por Bio10ct » Qua Abr 18, 2012 09:17
- 1 Respostas
- 1062 Exibições
- Última mensagem por LuizAquino

Qui Abr 19, 2012 11:58
Cálculo: Limites, Derivadas e Integrais
-
- Derivada {dúvida}
por Danilo » Ter Abr 23, 2013 11:51
- 1 Respostas
- 1036 Exibições
- Última mensagem por young_jedi

Ter Abr 23, 2013 12:04
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.