• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite tenso

Limite tenso

Mensagempor Isabela Sa » Qua Jun 29, 2011 19:27

\lim_{x\rightarrow+\infty}e^{\frac{x}{x^2}}


Alguem poderia me ajudar com a resolução?
Isabela Sa
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Qui Jun 23, 2011 12:24
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ensino Médio
Andamento: cursando

Re: Limite tenso

Mensagempor Claudin » Qua Jun 29, 2011 19:51

Sendo:

\lim_{x\rightarrow+\infty}e^\frac{x}{x^2}

Dividindo o expoente por x ficaria:

\lim_{x\rightarrow+\infty}e^\frac{1}{x}

Portanto:

\lim_{x\rightarrow+\infty}e^0 = 1
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.