• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Numeros criticos!!!

Numeros criticos!!!

Mensagempor aline_n » Qua Jun 01, 2011 18:59

Gostaria de saber se esta correto do jeito que fiz????

a) f(x)=4x^2-3x+2

f'(x)= 8x-3

8x-3=0

x=\frac{3}{8} esse é o numero critico da função!!!
aline_n
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Abr 28, 2011 09:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: Numeros criticos!!!

Mensagempor carlosalesouza » Qua Jun 01, 2011 19:19

Sim... este é o valor de x no ponto mínimo de f(x)

Adicionei o gráfico das funções para vc observar isso...

Números Críticos.png


Neste gráfico:
f é a parábola da função f(x)
f' é a reta inclinada dada pela derivada f'(x)
A é a interseção entre a reta da derivada e o eixo x
c é a reta perpendicular a x que passa pelo mesmo ponto A que a reta da derivada
B é o ponto de interseção entre a reta perpendicular c e a parábola f

Veja que o ponto B esta precisamente no vértice da função

Ou seja, a reta da derivada corta o eixo de x no ponto crítico da função..

como se trata de uma função de segundo grau, encontre o x vértice e verá que está certo...

Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)