• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Mais um limite

Mais um limite

Mensagempor Psilocybe » Ter Mai 31, 2011 20:33

Tenho esse limite:
\[\lim_{x\to 0+}{\left( \frac{\mathrm{sen}\left( x\right) }{x}\right) }^{x-1}\]

Chutei valores perto de 0+, e o limite resultou perto de 1. Será que ta certo? Isso significa que não deu indeterminação ? Não precisa aplicar nenhuma L'Hôpital ?
Psilocybe
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Abr 04, 2011 09:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Mais um limite

Mensagempor Claudin » Ter Mai 31, 2011 21:20

Cheguei no resultado 1 também
sem utilizar regra de l'Hopital
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Mais um limite

Mensagempor carlosalesouza » Qua Jun 01, 2011 00:27

Isso é um limite notável.... note que, quando x tende a 0, o expoente tende a -1... então a função tende a

\lim_{x\rightarrow 0^+}f\left (\frac{u}{v}\right) = \left(\frac{u}{v}\right)^{-1}=\frac{v}{u}

Onde u = sen(x) e v = x... assim, o limite resulta em \lim_{x\rightarrow 0^+}\frac{x}{sen(x)}, que é um limite notável, igual a 1... logo, o limite lateral existe e é 1
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: