• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Otimização

Otimização

Mensagempor elbert005 » Ter Mai 31, 2011 15:41

Olá amigos,

Estou com um grande problema para resolução de uma atividade na qual precisarei apresentar amanhã na aula de cálculo.

O problema é o seguinte:

Encontre o ponto P na parábola y=x² que está mais próximo de (3,0) . Justifique sua resposta que o ponto que você encontrou é realmente o mais próximo.

Para resolver eu isolei x e estou trabalhando em termos de y, mais consigo chegar na resposta (1,1). Mas não acho uma maneira de provar essa reposta.

Preciso de ajuda!!!


Elbert
elbert005
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Mai 31, 2011 15:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Otimização

Mensagempor LuizAquino » Ter Mai 31, 2011 17:23

Em exercícios de otimização você precisa primeiro obter a função que deseja otimizar. Em boa parte dos exercícios a função não é fornecida diretamente.

Pois bem, perceba que todos os pontos sobre a parábola y = x² têm o formato (k, k²), para algum real k.

Agora, basta armar a função que fornece a distância desse ponto ao ponto (3, 0).

Vale lembrar que dos conhecimentos de Geometria Analítica sabemos que a distância do ponto P = (x0, y0) à Q = (x1, y1) é dada por: d(P,\,Q) = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Otimização

Mensagempor elbert005 » Ter Mai 31, 2011 17:48

Boa tarde Luiz,


Eu tenho a seguinte dúvida:

elbert005
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Mai 31, 2011 15:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Otimização

Mensagempor elbert005 » Ter Mai 31, 2011 17:50

consequentemente a imagem em y= 1² = 1

??????

seria um teste da segunda derivada???
elbert005
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Mai 31, 2011 15:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Otimização

Mensagempor LuizAquino » Ter Mai 31, 2011 18:08

D² = (x - 3)² +(x²)²
f'(x) = 2(x-3) + 2(x²).2x
f(x)' = 2x - 6 + 4x³
então o ponto que zera a função é 1 mas como consigo provar isso?

Ora, se você quer comprovar que x = c é raiz da função f(x), então basta você exibir que f(c) = 0. Mas, se você quer explicar como obteve que x = c é uma raiz, aí é outra história. No caso desse exercício, como temos uma equação polinomial, você poderia usar o Teorema das Raízes Racionais.

Vale lembrar que para concluir que (1, f(1)) é o ponto de mínimo você ainda deve calcular a segunda derivada e verificar se f''(1) > 0.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?