• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Sex Mai 13, 2011 18:55

O video 05 Limite Infinito
mostra como exemplo uma nova resoluçao de

\lim_{x->2}\frac{x^2-4}{x-2} =4

em que no video anterior o limite achado era 4
porem nesse video 05 quando mistura com infinito
teve como valor 0 que multiplica +\infty

gostaria de saber o porque de ter dois modos de responder
em uma prova como eu responderia?

obrigado
abraço
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Sex Mai 13, 2011 19:19

Eu recomendo que você assista aos vídeos com mais atenção!

Sabemos que \lim_{x\to 2^+} \frac{x^2 - 4}{x - 2} = \lim_{x\to 2^+} \frac{(x - 2)(x + 2)}{x - 2} = \lim_{x\to 2^+} x + 2 = 4. Esse é o valor correto desse limite.

Por outro lado, como explicado no vídeo "05. Cálculo I - Limites Infinitos", vamos imaginar que uma pessoa no início do curso de cálculo tenha feito o seguinte:
\lim_{x\to 2^+} \frac{x^2 - 4}{x - 2} = \left(\lim_{x\to 2^+}x^2 - 4 \right) \cdot \left(\lim_{x\to 2^+} \frac{1}{x - 2}\right) = 0\cdot (+\infty) = 0

Onde está o erro dessa pessoa? Ora, o erro está no fato de que a expressão 0\cdot (+\infty) representa uma indeterminação! Isto é, se \lim_{x\to c} f(x) = 0 e \lim_{x\to c} g(x) = +\infty, então não necessariamente temos que \lim_{x\to c} f(x)g(x) = 0.

O exemplo dado no vídeo foi para ilustrar isso.

Observação
Quando você enviar uma mensagem para o fórum citanto um determinado vídeo seja mais específico sobre ele. Nem todo mundo aqui no fórum sabe que os vídeos que você se refere são aqueles no meu canal.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Sáb Mai 14, 2011 01:06

obrigado pela ajuda!
na proxima especificarei mais sobre os videos!
mas deu pra entender agora.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}