• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resolva a expressão:

Resolva a expressão:

Mensagempor mat1288 » Qua Abr 27, 2011 00:24

\lim_{x\rightarrow a}x²+(1-a)x-a/x-a

Em vez de ser o A que está elevado ao quadrado, é o x que está elevado.Aliás não há este A que aparece ai na imagem.Não pertence a expressão. Calcule como se não tivesse o A na expressão.
mat1288
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Abr 26, 2011 23:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Resolva a expressão:

Mensagempor LuizAquino » Qua Abr 27, 2011 09:55

O que você escreveu (concertando a letra "A"), foi:
\lim_{x\rightarrow a}x^2+(1-a)x-a/x-a

Colocando isso em uma notação mais conveniente, o que você de fato escreveu foi:
\lim_{x\rightarrow a}x^2+(1-a)x-\frac{a}{x}-a

Mas, ao que parece, o que você quer é:
\lim_{x\rightarrow a}\frac{x^2+(1-a)x-a}{x-a}

Considerando que seja esse o limite que você desejava, para ter escrito isso na notação que você usou, então você deveria ter escrito algo como:
\lim_{x\rightarrow a}[x^2+(1-a)x-a]/(x-a)

Seja mais cuidadoso com o uso dos delimitadores adequados, isto é, com o uso dos símbolos "()", "[]" e "{}".

Agora, vamos ao exercício.

O que você precisa é fatorar o numerador. Note que a é raiz do polinômio n(x) = x^2+(1-a)x-a. Isso significa que n(x) = (x-a)(x-x^\prime), onde x' é a outra raiz de n(x).

O seu trabalho então será determinar essa outra raiz. Existem várias formas de fazer isso. Mas, o mais simples nesse caso talvez seja você perceber que a soma das raízes deve ser igual a -(1 - a)/2.

Observação
O erro da letra "A" que apareceu deve-se ao fato de você ter escrito "x²" ou invés de "x^2" dentro do ambiente tex.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: