• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema com Derivadas

Problema com Derivadas

Mensagempor carlosvinnicius » Seg Dez 27, 2010 01:08

Comecei a estudar derivadas agora e sempre que é pra derivar uma fração tenho problemas =s Alguém pode me explicar como deriva f(x)=\frac{2x+5}_{4x} Agradeço desde já!

A resposta é f'(x)=-\frac{5}_{4x^2}
e^\pi^\imath+1=0
carlosvinnicius
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sex Dez 17, 2010 14:26
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Problema com Derivadas

Mensagempor Moura » Seg Dez 27, 2010 12:29

Regra do quociente

\left(\frac{u}{v} \right){}^{`} = \frac{u`v - v`u}{u{}^{2}}
P = NP
Moura
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Dez 13, 2010 11:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Problema com Derivadas

Mensagempor carlosvinnicius » Seg Dez 27, 2010 13:11

Tem como resolver a questão pra mim por essa regra explicando passo-a-passo? Eu ainda não entendi direito... obrigado pela resposta Moura!
e^\pi^\imath+1=0
carlosvinnicius
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sex Dez 17, 2010 14:26
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Problema com Derivadas

Mensagempor Moura » Seg Dez 27, 2010 14:00

f(x) = \frac{2x+5}{4x}= f(x) = \frac{\frac{x}{2}+\frac{5}{4}}{x} =

u = \frac{x}{2}+\frac{5}{4}

v = x

\frac{df}{dx} = \frac{(\frac{x}{2}+\frac{5}{4})`x-x`(\frac{x}{2}+\frac{5}{4})}{x{}^{2}}= \frac{(\frac{1}{2})x-1(\frac{x}{2}+\frac{5}{4})}{x^2} =

\frac{\frac{x}{2}-\frac{x}{2}-\frac{5}{4}}{x{}^{2}}= -\frac{5}{4}*\frac{1}{x^2} =  -\frac{5}{4x^2} :y:
Editado pela última vez por Moura em Seg Dez 27, 2010 14:35, em um total de 1 vez.
P = NP
Moura
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Dez 13, 2010 11:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Problema com Derivadas

Mensagempor carlosvinnicius » Seg Dez 27, 2010 14:30

Obrigado! Valeu mesmo! Achei também no YouTube uma video-aula explicando como faz http://www.youtube.com/watch?v=pAAoMwOFEFU Abraços!
e^\pi^\imath+1=0
carlosvinnicius
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sex Dez 17, 2010 14:26
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.