• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Euclidiana Plana] Prove o teorema

[Geometria Euclidiana Plana] Prove o teorema

Mensagempor stanley tiago » Qua Abr 11, 2012 13:00

Bom dia . eu estou no primeiro ano de licenciatura em matemática .
A minha professora de GE pediu para que provássemos um teorema . Esse teorema é do primeiro capítulo de geometria plana , que diz o seguinte :

a) Se P e Q estão em lados opostos de uma reta r , e Q e T estão em lados opostos de r , então P e T estão do mesmo lado de r .

b) Se P e Q estão em lados opostos de uma reta r , e Q e T estão no mesmo lado de r , então P e T estão em lados opostos de r .

Eu tentei fazer da sequinte forma considera a hipótese e negar a tese e chegar numa conclusão por absurdo .
Mas eu acho que isso não é uma proposição simples do tipo (p\Rightarrow q) .
Eu acho que é desse tipo(p     \Lambda q)\Rightarrow s .


a) Se P e Q estão em lados opostos de uma reta r , e Q e T estão em lados opostos de r , então P e T não estão do mesmo lado r .



Só que eu estou perdido , eu não consigo formalizar o meu raciocínio. E por isso pesso a ajuda de voçês !
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Geometria Euclidiana Plana] Prove o teorema

Mensagempor Guill » Sáb Abr 14, 2012 19:49

Partiremos da seguinte proposição: '' Uma reta divide um plano em duas partes.''


Se um ponto fora da reta não pertence a um dos lados, precisa pertencer ao outro lado do plano. Essa segunda afirmação pode ser demonstrada através de conjuntos:

Seja \alpha um plano qualquer. Traçando uma reta qualquer, dividiremos esse plano em dois semiplanos. Agora, trataremos os planos como conjuntos de pontos, onde cada ponto que forma o plano é um elemento diferente. Os semiplanos A e B e a reta R são conjuntos de pontos, onde:

A\cap B = \phi 

A\cap C = \phi

A\cap R = \phi

A\cap B \cap R = \phi

A \cup B \cup R = \alpha


Seja a um ponto no plano (fora da reta r), onde a não pertence a nenhum dos dois lados. Por definição a\in \alpha \rightarrow a\in A \cup B \cup R \rightarrow a\in R. Esse absurdo prova a sentença.



Dessa maneira, se P e Q estão em lados opostos de uma reta, P está do lado x e Q está do lado y. Como Q está do lado oposto a T, pela proposição T está do lado x, o que mostra que P e T estão do mesmo lado.
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Geometria Euclidiana Plana] Prove o teorema

Mensagempor stanley tiago » Seg Abr 16, 2012 11:14

valeu obrigado , me ajudou muito .
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}