por alfabeta » Qua Fev 29, 2012 23:52
Na figura a seguir ABCD é um quadrado e TDCQ um trapézio isósceles inscrito em uma circunferência (l) de raio igual a
raiz de5 / 2 cm. Os segmentos de reta AT e BQ são tangentes à circunferência (l) em T e Q. Sabendo-se que AT e BQ têm
comprimento igual ao dobro do lado do quadrado ABCD, determine a medida do segmento de reta AB.
resposta: raiz de 2 sobre2.
tentativa:eu traçei uma reta de A até o centro da circunferencia. Desta forma, eu disse que formou-se o triangulo isosceles ATO, sendo AT = AO = 2L. Daí aplique a propriedade de propriedade de potencia de ponto com a reta tangente AT e a secante AE (reta que sai de A passa pelo centro e vai até o ponto E que criei na circunferencia). Desta forma:
AT ao quadrado= ( 2L - R)(2L +R) Mas esta conta não dá certo
Por favor, me ajude a resolver.
Se puder , me explica também como coloco as contas direitinho, como quadrado, raiz e frações.
Agradeço antecipadamente.
-
alfabeta
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Ter Fev 28, 2012 11:37
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Qui Mar 01, 2012 16:09
alfabeta escreveu:Na figura a seguir ABCD é um quadrado e TDCQ um trapézio isósceles inscrito em uma circunferência (l) de raio igual a
raiz de5 / 2 cm. Os segmentos de reta AT e BQ são tangentes à circunferência (l) em T e Q. Sabendo-se que AT e BQ têm
comprimento igual ao dobro do lado do quadrado ABCD, determine a medida do segmento de reta AB.

- questao 3.jpg (9.41 KiB) Exibido 1265 vezes
alfabeta escreveu:tentativa:eu traçei uma reta de A até o centro da circunferencia. Desta forma, eu disse que formou-se o triangulo isosceles ATO, sendo AT = AO = 2L. Daí aplique a propriedade de propriedade de potencia de ponto com a reta tangente AT e a secante AE (reta que sai de A passa pelo centro e vai até o ponto E que criei na circunferencia). Desta forma:
AT ao quadrado= ( 2L - R)(2L +R) Mas esta conta não dá certo
O triângulo ATO não é isósceles. Vide a figura abaixo.

- figura1.png (6.13 KiB) Exibido 1265 vezes
Ao invés da construção que você tentou, considere a construção ilustrada na figura abaixo.

- figura2.png (6.39 KiB) Exibido 1265 vezes
Usando que DEF é um triângulo retângulo e a relação de potência entre segmento tangente e segmento secante na circunferência, temos o seguinte sistema:

Agora basta resolver esse sistema para determinar o valor de
x.
alfabeta escreveu:Se puder , me explica também como coloco as contas direitinho, como quadrado, raiz e frações.
Por favor, vide o tópico:
DICA: Escrevendo Fórmulas com LaTeX via BBCodeviewtopic.php?f=9&t=74
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por alfabeta » Qui Mar 01, 2012 17:56
Muito obrigada!
-
alfabeta
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Ter Fev 28, 2012 11:37
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.