• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Plana - "Área Máxima"

Geometria Plana - "Área Máxima"

Mensagempor raimundoocjr » Sex Out 21, 2011 20:30

01. Num terreno, que tem a forma de um triângulo retângulo com catetos medindo 40 e 50 metros, deseja-se construir uma casa retangular de dimensões x e y como indicado na figura. Para que a área ocupada pela casa seja máxima, os valores de x e y devem ser, em metros, respectivamente iguais a
A) 20 e 25
B) 24 e 30
C) 25 e 20
D) 30 e 24

Imagem

A priori não tenho uma base para início.
raimundoocjr
 

Re: Geometria Plana - "Área Máxima"

Mensagempor Neperiano » Sáb Out 22, 2011 13:07

Ola

Não me lembro muito bem como resolver, sei que tenque usar derivada para máximo e minimo, tenque derivar a função que dá essa área, alguma coisa assim

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Geometria Plana - "Área Máxima"

Mensagempor saberdigitalnet » Sáb Nov 24, 2012 17:19

A figura completa é um "triângulo retângulo" (maior) composto pelo "retâgulo", mais dois triângulos retângulos menores, identicos entre si e proporcionais ao maior. Seria interessante que se fizesse o desenho.

Chamemos de x e y as dimensões do retângulo. Portanto, os catetos dos dois triângulos retângulos T1 e T2 serão, respectivamente: T1: (50 -y) e x; T2: y e (40 - x).

Por semelhança de triângulos, teremos:

T1 com o maior:
(50 - y) / x = 50 / 40 = 1,25
Logo, (50 - y) = 1,25.x (i)

T2 com o maior:
y / (40 - x) = 1,25
Logo, y = 1,25.(40 - x) (ii)

A área do triâgulo maior é: (50.40)/2 = 1000.

A área de T1 é:
AT1 = (50 - y).x / 2 (iii)

Substituindo (i) em (iii):
AT1 = 1,25.x.x /2 = 0,625.x²
________________________

A área de T2 é:
AT2 = (40 - x).y / 2 (ii)

Substituindo (ii) em (iv):
AT2 = (40 - x).1,25.(40 - x) / 2 = 0,625.(40 - x)²

_________________________

A área do retângulo pode ser escrita em função de x da seguinte forma:

A(x) = 1000 - (AT1 + AT2)
A(x) = 1000 - [0,625.x² + 0,625.(40 - x)²]

A(x) = 1000 - [0,625.x² + 0,625.(1600 - 80.x + x²)]
A(x) = 1000 - [0,625.x² + 1000 - 50.x + 0,625.x²]
A(x) = 1000 - 1,25.x² - 1000 + 50.x

A(x) = -1,25.x² + 50.x

Onde,

a = -1,25
b = 50
c = 0
_____________________

Devemos, agora, determinar o X do vértice, dado pela seguinte expressão:

Xv = - b / 2.a

Xv = - 50 / 2.(-1,25) = 50 / 2,5 = 20

A dimensão y é dada por:

y = 1,25.(40 - x) = 1,25.(40 - 20) = 1,25.(20) = 25.

OPÇÃO LETRA A.

___________________________________________________

Professor Elias Celso Galveas
http://www.facebook.com/saberdigital

___________________________________________________
saberdigitalnet
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Nov 24, 2012 09:44
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Psicopedagogia
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59