• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ALTURA DO UMBIGO

ALTURA DO UMBIGO

Mensagempor maria cleide » Dom Mai 22, 2011 19:27

Observe a figura anexa:

Depois de tirar as medidas de uma modelo, Aristeu resolveu fazer uma brincadeira:
1º) esticou uma linha AB cujo comprimento é metade da altura dela;
2º) ligou B ao seu pé no ponto C;
3º) fez uma rotação de BA com centro B, obtendo o ponto D sobre BC.
4º) fez uma rotação CD com centro C, determinando E sobre AC.

Para surpresa da modelo, CE é a altura do seu umbigo. Tomando AB como unidade de comprimento e considerando \sqrt{5}=2,2, a medida CE da altura do umbigo da modelo é:
A-( )1,4
B-( )1,3
C-( )1,2
D-( )1,1
E-( )1,0


Conclusão: Sei que AB=AE=CE, portando um cateto é o dobro do outro, mas agora não consigo continuar.
Anexos
digitalizar0010.jpg
maria cleide
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Dom Mai 08, 2011 12:57
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: ALTURA DO UMBIGO

Mensagempor LuizAquino » Dom Mai 22, 2011 20:45

A figura abaixo ilustra o exercício.

altura-umbigo.png
altura-umbigo.png (6.86 KiB) Exibido 4152 vezes


As informações disponíveis são:
(i) \frac{\overline{AC}}{2} = \overline{AB} = \overline{BD} ;

(ii) \overline{CD} = \overline{CE} .

Deseja-se calcular \overline{CE} . Note que \overline{CE} = \overline{CB} - \overline{BD} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}