• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[ângulo suplementar] Geometria Espacial

[ângulo suplementar] Geometria Espacial

Mensagempor Cleyson007 » Seg Jul 21, 2008 14:05

Olá, boa tarde! Fábio, estou com uma dúvida na resolução da questão abaixo apresentada:
O ângulo igual a \frac{5}{4} do seu suplemento mede quanto?
Eu a resolvi de dois modos, porém as respostas ficaram diferentes. Há alguma correta? qual? e por quê?
O 1º modo que usei foi:
Chamei o ângulo de x \rightarrow x= \left(180-x \right)\frac{5}{4}\rightarrow x= 100º
O 2º modo que utilizei foi:
x= (x-180)\frac{5}{4}\rightarrow x=900º
Por favor ajude-me, pois, não sei qual está certa ou se ambas estão erradas.
Obrigado
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1216
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Geometria Espacial

Mensagempor fabiosousa » Seg Jul 21, 2008 14:30

Olá, boa tarde.

O primeiro modo está correto pois a equação representa exatamente a condição do enunciado.

Dois ângulos são suplementares se a soma de suas medidas é 180º.

Você mesmo poderia testar qual valor está correto, por exemplo:
Se 100º é o ângulo, seu suplementar é 80º (pois 100+80 = 180).

100 = \frac54 \cdot 80

100 = \frac{400}{4}

100 = 100
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 883
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}