• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exerc.proposto

exerc.proposto

Mensagempor adauto martins » Ter Set 24, 2019 14:38

(epcar-escola preparatoria de cadetes da aeronautica-exame de admissao 1958)
um circulo tem 20 cm de raio.achar o valor do decagono regular convexo inscrito no referido circulo.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1026
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.proposto

Mensagempor adauto martins » Sex Set 27, 2019 21:08

soluçao
aqui e o calculo da area do decagono regular,esqueci de referir no ditado do problema...
o decagono inscrito no circulo de raio 2 cm,e um conjunto de 10 triangulos isosceles,entao...
vamos calcular a area de um desses triangulos e multiplicar por 10...
o lados isosceles do triangulo tem medida do raio do circulo,o qual esta inscrito,e o angulo central sera 360/10=36°
vamos tomar o triangulo retangulo e calcular a base,altura desse triangulo,o qual nos dara sua area...
o angulo da base sera...90-36/2=72°,o lado adjacente a esse angul(72°),que e a metade do comprimento da base sera...
x=2.cos(72)=2.0.31=0.61...entao a base tera 0.61*2=1.24...a altura sera h=2.sen72=2*0.95=1.9 cm...
logo a area do triangulo sera=b.h/2...a=(1.24*1.9)/2=1.18...a area do decagono sera 10*1.18=11.8 cm2...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1026
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}