• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Plana] Explicação sobre essas coordenadas

[Geometria Plana] Explicação sobre essas coordenadas

Mensagempor MrZ3R0 » Sex Nov 11, 2016 07:10

Sendo θ o ângulo mostrado na figura abaixo e considerando o referencial indicado na figura, as coordenadas do ponto A são dadas por:

Imagem

Sentido anti-horário
Diâmetro = 20

A resposta correta sendo ( 10senθ, 10 - 10cosθ ).

Não entendo essa solução, não seria essa a fórmula para resolver?

Imagem

Ela mostra x como a linha dos cossenos e y para senos, e na resposta está o oposto, não entendi.

E se eu estou certo, o gráfico é em coordenadas polares não?
MrZ3R0
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Nov 11, 2016 07:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Geometria Plana] Explicação sobre essas coordenadas

Mensagempor petras » Qua Jan 04, 2017 15:53

As fórmulas de x e y que está utilizando são para o ângulo entre o eixo x e o ponto A. No caso do exercício o ângulo dado foi entre o EIXO Y e o ponto A.

Calculemos x' e y' em relação ao eixo x'.

Perceba no gráfico anexo que a coordenada x' se dará por r.cos (90-\theta) e y' por r.sen(90-\theta)

cos(90-\theta) = sen\theta então x' = 10.sen\theta
sen(90-\theta) = cos\theta então y' = 10.cos\theta

A coordenada de x é a mesma de x' = 10.sen\theta
A coordenada de y será 10 - y' = 10 - 10\ \cos\theta
Anexos
Sem título.jpg
Sem título.jpg (10.26 KiB) Exibido 246 vezes
petras
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Sex Jan 22, 2016 21:19
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}