• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria

Geometria

Mensagempor carlos_florencio » Ter Mar 18, 2014 17:55

Olá, Pessoal!

Livro do Morgado 1, questão 111) da pág. 128:

Os pontos M, N e P pertencem um a cada lado de um triângulo ABC. O perímetro do triângulo MNP será mínimo se seus vértices forem:

A) os pés das bissetrizes internas
B) os pés das medianas
C) os pés da alturas
D) quaisquer porque o perímetro é constante
E) NRA
No gabarito está a letra C. Tentei resolver por desigualdade dos lados de um triângulo e também por várias construções, mas não obtive êxito.
Aguardo ajuda, grato.
carlos_florencio
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Mar 18, 2014 17:22
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.