• Anúncio Global
    Respostas
    Exibições
    Última mensagem

riângulos ABC e DEF são congruentes

riângulos ABC e DEF são congruentes

Mensagempor Ana Maria da Silva » Qua Abr 17, 2013 15:42

Se os triângulos ABC e DEF são congruentes com a = 7,0, b = x/2, c = 5,5, d = y/3, e = 8,7 e f = z, de acordo com a figura abaixo, calcule x + y + z. Não consigo colocar as figuras.
Ana Maria da Silva
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 83
Registrado em: Qua Mar 27, 2013 15:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: riângulos ABC e DEF são congruentes

Mensagempor e8group » Qua Abr 17, 2013 17:02

Por definição de congruência de triângulos ,veja : http://www.professores.uff.br/dirceuesu/GBaula2.pdf

Temos que

\triangle{ABC} \cong \triangle{DEG}  \iff

\begin{cases} AB \equiv DE \\ BC\equiv EF \\ CA \equiv FD \end{cases}  \text{e}   \begin{cases} \hat{A} = \hat{D} \\ \hat{B} = \hat{E} \\ \hat{C} = \hat{F} \end{cases} \right )

Como não há figura anexada ,imagino que :

AB = a = 7 , BC =b= x/2 , CA = c = 5,5 , DE = d = y/3 , EF = e = 8
,7 e FD = f = z . Caso as medidas estão relacionadas corretamente , vamos ter que

x +y +z = 2 BC + 3 DE + FD = 2 EF + 3AB + CA = 2 \cdot 8,7 + 3 \cdot 7 + 5,5 = 43,9 .

Observação: Ao invés de triângulo DEG é DEF .Troquei a letra F por G simplesmente pelo LaTeX apresentar o seguinte problema ,o código \triangle{DEF} produz [Unparseable or potentially dangerous latex formula. Error 2 ] diferente de \triangle{DEG} = \triangle{DEG}
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59