por Douglaspimentel » Qua Set 15, 2010 00:17
Uem-Pr Considere ABC um triângulo inscrito em uma semicircuferência de diâmetro BC cuja medida do ângulo C é 20 º. Determine a medida, em graus, do ângulo formado pela altura e pela mediana relativas a hipotenusa.
-
Douglaspimentel
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Sex Mar 05, 2010 12:42
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: nada
- Andamento: cursando
por gichan » Qua Set 15, 2010 02:33
*Edit: Desculpe, quando eu revi que eu reparei que usei as letras trocadas(A, B, C do triângulo). Mas veja que não faz a menor diferença na resposta final, então prefiro deixar assim mesmo ^.^

Repare o seguinte.
*Todo o triângulo incrito numa semicircunferência é retângulo.
No caso, o triângulo é retângulo em B(A
BC).
O ponto M corresponde a mediana e o ponto H a altura(formando um ângulo de 90º com a base)
*O ângulo B
ÂC(70º) corresponde à metade do arco BC(140º). Consequentemente, o ângulo central M (B
MC) é de 140º:

*Analisando o triângulo B
MC, observamos que já possuímos 2 de seus ângulos. Sendo assim, concluímos que o ângulo B (M
BC) é de 20º:
*Pelo mesmo raciocínio e lembrando que BH é a altura, ou seja, forma ângulo de 90º com a hipotenusa, temos que o ângulo B (A
BH) é 20º.

Para concluir, retomamos o começo: o triângulo ABC é incrito numa semicircunferência, o que significa que o ângulo B(A
BC) vale 90º. Sendo assim:
20 + x + 20 = 90
x = 50º.
-

gichan
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Seg Jul 19, 2010 15:33
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Programação
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Angulos na Circunferencia
por vyhonda » Seg Mar 29, 2010 11:12
- 2 Respostas
- 12474 Exibições
- Última mensagem por vyhonda

Qua Mar 31, 2010 13:18
Geometria Plana
-
- angulos na circunferencia
por alfabeta » Ter Fev 28, 2012 11:53
- 4 Respostas
- 12677 Exibições
- Última mensagem por alfabeta

Qua Fev 29, 2012 22:42
Geometria Plana
-
- [Ângulos numa Circunferência] (UNIFOR-CE/1998)
por eiji » Sex Abr 13, 2012 20:57
- 2 Respostas
- 9923 Exibições
- Última mensagem por eiji

Sex Abr 13, 2012 21:28
Geometria Plana
-
- [circunferência] Questão de reta secante a circunferência
por danielleecb » Qui Jun 07, 2012 23:26
- 1 Respostas
- 1879 Exibições
- Última mensagem por MarceloFantini

Sex Jun 08, 2012 12:24
Geometria Analítica
-
- Ângulos
por admin » Sex Set 07, 2007 06:42
- 3 Respostas
- 13556 Exibições
- Última mensagem por Numwantida

Qui Mai 24, 2018 05:06
Pérolas
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.