• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria

Geometria

Mensagempor Camila Albiero Iuspa » Ter Ago 14, 2012 21:24

Olá tudo bem?
Tenho dúvidas em relação a este problema:

" Qual é a área de um triângulo retângulo isósceles em que a hipotenusa mede 12 m? "
Aguardo retorno.
Camila Albiero Iuspa
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Ago 12, 2012 17:39
Formação Escolar: GRADUAÇÃO
Área/Curso: pedagogia
Andamento: formado

Re: Geometria

Mensagempor Cleyson007 » Sex Ago 17, 2012 10:11

Bom dia Camila!

Triângulo isósceles --> Dois lados iguais e um diferente (A saber: x , x e 12) --> Dois catetos iguais de medida "x" e a hipotenusa que vale 12m.

Aplicando Pitágoras, temos: a² = b² + c² --> 12² = x² +x² --> 144 = 2x² --> x² = 72 --> x = 6V2 (Seis raiz de dois)

Calculando a área: At = b.h / 2 --> At = x . x / 2 --> x² /2 --> 72/2 = 36cm²

Comente qualquer dúvida :y:
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.