• Anúncio Global
    Respostas
    Exibições
    Última mensagem

cicunferencia

cicunferencia

Mensagempor alfabeta » Qua Fev 29, 2012 23:52

questao 3.jpg
Na figura a seguir ABCD é um quadrado e TDCQ um trapézio isósceles inscrito em uma circunferência (l) de raio igual a
raiz de5 / 2 cm. Os segmentos de reta AT e BQ são tangentes à circunferência (l) em T e Q. Sabendo-se que AT e BQ têm
comprimento igual ao dobro do lado do quadrado ABCD, determine a medida do segmento de reta AB.

resposta: raiz de 2 sobre2.

tentativa:eu traçei uma reta de A até o centro da circunferencia. Desta forma, eu disse que formou-se o triangulo isosceles ATO, sendo AT = AO = 2L. Daí aplique a propriedade de propriedade de potencia de ponto com a reta tangente AT e a secante AE (reta que sai de A passa pelo centro e vai até o ponto E que criei na circunferencia). Desta forma:

AT ao quadrado= ( 2L - R)(2L +R) Mas esta conta não dá certo

Por favor, me ajude a resolver.

Se puder , me explica também como coloco as contas direitinho, como quadrado, raiz e frações.

Agradeço antecipadamente.
alfabeta
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Fev 28, 2012 11:37
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: cicunferencia

Mensagempor LuizAquino » Qui Mar 01, 2012 16:09

alfabeta escreveu:Na figura a seguir ABCD é um quadrado e TDCQ um trapézio isósceles inscrito em uma circunferência (l) de raio igual a
raiz de5 / 2 cm. Os segmentos de reta AT e BQ são tangentes à circunferência (l) em T e Q. Sabendo-se que AT e BQ têm
comprimento igual ao dobro do lado do quadrado ABCD, determine a medida do segmento de reta AB.

questao 3.jpg
questao 3.jpg (9.41 KiB) Exibido 1180 vezes



alfabeta escreveu:tentativa:eu traçei uma reta de A até o centro da circunferencia. Desta forma, eu disse que formou-se o triangulo isosceles ATO, sendo AT = AO = 2L. Daí aplique a propriedade de propriedade de potencia de ponto com a reta tangente AT e a secante AE (reta que sai de A passa pelo centro e vai até o ponto E que criei na circunferencia). Desta forma:

AT ao quadrado= ( 2L - R)(2L +R) Mas esta conta não dá certo


O triângulo ATO não é isósceles. Vide a figura abaixo.

figura1.png
figura1.png (6.13 KiB) Exibido 1180 vezes


Ao invés da construção que você tentou, considere a construção ilustrada na figura abaixo.

figura2.png
figura2.png (6.39 KiB) Exibido 1180 vezes


Usando que DEF é um triângulo retângulo e a relação de potência entre segmento tangente e segmento secante na circunferência, temos o seguinte sistema:

\begin{cases}
x(x + y) = (2x)^2 \\
y^2 + x^2 = \left(\sqrt{5}\right)^2
\end{cases}

Agora basta resolver esse sistema para determinar o valor de x.

alfabeta escreveu:Se puder , me explica também como coloco as contas direitinho, como quadrado, raiz e frações.


Por favor, vide o tópico:

DICA: Escrevendo Fórmulas com LaTeX via BBCode
viewtopic.php?f=9&t=74
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: cicunferencia

Mensagempor alfabeta » Qui Mar 01, 2012 17:56

Muito obrigada!
alfabeta
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Fev 28, 2012 11:37
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.