• Anúncio Global
    Respostas
    Exibições
    Última mensagem

área

área

Mensagempor c_zaidan » Qui Dez 09, 2010 11:33

Um curral retangular será construído aproveitando-se um muro pré-existente no terreno, por medida de economia. Para cercar os outros lados, serão utilizados 600m de tela de arame. Para que a área do curral seja a maior possível, a razão entre as suas menor e maior dimensões será:

Chamei a medida do muro de x e do outro lado de 600-x, mas travou e nn consegui desenvolver mais. Será q dá pra me dar uma dica, ou ver o q eu to errando?

Valeu
c_zaidan
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Out 22, 2010 15:40
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: área

Mensagempor alexandre32100 » Qui Dez 09, 2010 16:20

Temos o seguinte esquema
cerca.JPG
a parte em vermelho representa o muro
cerca.JPG (4.02 KiB) Exibido 3403 vezes

Onde 2x+y=600 ou y=600-2x
Como a área do retângulo é dada por
A=b\cdot h \iff A=xy
Podemos fazer a substituição e obter
A=x(600-2x)\iff A=-2x^2+600x
É necessário agora apenas encontrar o valor de y_v (y do vértice).
alexandre32100
 


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.