• Anúncio Global
    Respostas
    Exibições
    Última mensagem

volume conico

volume conico

Mensagempor felipe170480 » Dom Jan 16, 2011 17:24

gostaria de uma ajuda, preciso da formula de calculo de uma figura q nao sei o nome...bom seria um cilindro conico, vou postar a imagem do q seria e conto com a ajuda de vcs mto obrigado
Anexos
cone cópia.jpg
segue a imagem com detalhes da figura
felipe170480
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Jan 16, 2011 16:32
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: volume conico

Mensagempor felipe170480 » Dom Jan 16, 2011 17:26

opa soh corrigindo....nao seria raio e sim diametro...obrigado
felipe170480
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Jan 16, 2011 16:32
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: volume conico

Mensagempor Dan » Dom Jan 16, 2011 17:39

Na verdade esse sólido deve ser pensado em duas partes: um cilindro e um tronco de cone.

O que você deseja calcular? Superfície ou volume?

De qualquer forma você encontra as fórmulas na internet. Basta procurar por cilindro e tronco de cone.

Caso você deseje calcular a superfície, não esqueça de descontar a base maior do tronco de cone e uma das bases do cilindro.

Qualquer dúvida é só falar.
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: volume conico

Mensagempor felipe170480 » Dom Jan 16, 2011 17:49

Dan escreveu:Na verdade esse sólido deve ser pensado em duas partes: um cilindro e um tronco de cone.

O que você deseja calcular? Superfície ou volume?

De qualquer forma você encontra as fórmulas na internet. Basta procurar por cilindro e tronco de cone.

Caso você deseje calcular a superfície, não esqueça de descontar a base maior do tronco de cone e uma das bases do cilindro.

Qualquer dúvida é só falar.

caro amigo gostaria de calcular o volume, esta parte de baixo se chama tronco de cone eh isso? vou procurar mas se alguem ja tiver um link q pudesse postar ou a formula mesmo pq ja procurei mto e na verdade nao axo desta fig.
felipe170480
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Jan 16, 2011 16:32
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: volume conico

Mensagempor Dan » Dom Jan 16, 2011 17:51

Como você quer o volume as fórmulas são:

Tronco de cone: V = \frac{1}{3} \pi h \left({R}^{2} + Rr + {r}^{2} \right)

Onde h é a altura do tronco de cone, r é o raio da base menor e R é o raio da base maior.

Para calcular o volume do cilindro basta fazer área da base vezes altura.
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.