• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Poliedro

Poliedro

Mensagempor flavio2010 » Seg Jun 28, 2010 23:47

Um poliedro convexo tem 5 faces quadrangulares e 4 faces triangulares. O número de diagonais é:
a) 6
b) 8
c) 9
d) 10
e) 12
flavio2010
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Jun 10, 2010 22:27
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Poliedro

Mensagempor vyhonda » Dom Jul 04, 2010 01:01

Para calcularmos as diagonais, primeiramente deve-se ter algumas informações como nº de vertices, nº de faces, nº de arestas ...

Para tal, utilizaremos a Relação de Euler que é a seguinte :: V + F = A + 2, onde V é o nº de vértices, F é o nº de faces e A é o nº de arestas.

Faces = 5 + 4 , pois temos 4 trinagulos e 5 quadrados
Arestas = \frac{5.4 + 4.3}{2} (pois cada um dos 5 quadrados possui 4 arestas e cada um dos 4 triângulos possui 3 arestas)

V + 9 = 16 + 2 , portanto V=9.

Com esses dados pode-se calcular o número de diagonais de um poliedro utilizando a fórmula :: D = \frac{v(v-1)}{2} - A - {\sum_{}^{}}_{df}

onde: - D : Total de diagonais do poliedro
- v : nº de vértices do poliedro
- A : nº de arestas do poliedro
- {\sum_{}^{}}_{df} : Somatória das diagonais das faces

Dessa forma: D = \frac{9(9-1)}{2} - 16 - 10

- Resposta :: Alternativa D


OBS:: Para Calcular {\sum_{}^{}}_{df} , basta utilizar a fórmula da diagonal para figuras planas d = \frac{n(n-3)}{2}, para cada figura geométrica, no caso apenas o quadrado possui diagonal, e cada quadrado possui 2 diagonais.
vyhonda
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Jan 17, 2010 20:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Materiais - Unesp
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59