• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Volume de Pirâmides internas à um cubo]

[Volume de Pirâmides internas à um cubo]

Mensagempor Gustavo Gomes » Sáb Fev 15, 2014 22:01

Ola!
Em um cubo de volume V, sejam F1 e F2 duas faces paralelas. Uma pirâmide tem F1 como base e vértice no centro de F2 e outra pirâmide tem F2 como base e vértice no centro de F1.
Qual o volume da parte comum a essas pirâmides?

A resposta é V/12.

Não estou conseguindo definir a área da secção que representa a base dessas partes comuns....

Aguardo. Grato.
Gustavo Gomes
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Out 05, 2012 22:05
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática-Licenciatura
Andamento: formado

Re: [Volume de Pirâmides internas à um cubo]

Mensagempor young_jedi » Dom Fev 16, 2014 19:41

as piramedes se interceptam no centro do cubo portanto a metade superior de cada piramede esta contida dentro da outra sendo esta a região comum entre elas
temos portanto que calcular o volume da metade superior de cada uma das metades superiores

piram.png
piram.png (7.06 KiB) Exibido 2770 vezes

sendo o lado do quadrado igual a x então a altura dessas piramdes sera x/2 e o lado da base por semelhança de triangulos tambem sera x/2
portanto o volume de cada uma sera

V_1=\frac{1}{3}.\frac{x}{2}.\frac{x}{2}.\frac{x}{2}

V_1=\frac{x^3}{24}

como o volume comum é a soma do volume das duas piramedes então

V_c=2.V_1=\frac{x^3}{12}

mais como V=x^3

V_c=\frac{V}{12}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.