• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Paralelepípedo

Paralelepípedo

Mensagempor Daniel Gurgel » Qui Out 22, 2009 12:15

Olá pessoal, não estou conseguindo fazer essa questão, se alguém conseguir mande-me a resolução por favor.
A área de um paralelepípedo retângulo é 720{m}^{2} . A diagonal de uma de suas faces mede 20m e a soma das suas dimensões é 34m .Quais as dimensões deste paralelepípedo ?
Daniel Gurgel
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sáb Ago 22, 2009 18:04
Formação Escolar: ENSINO MÉDIO
Área/Curso: concursos
Andamento: cursando

Re: Paralelepípedo

Mensagempor Molina » Qui Out 22, 2009 13:51

Boa tarde, Daniel.

Temos três equações:

a*b*c=720
a+b+c=34
a^2+c^2=400

To tentando usar essas informações para encontrar alguma das dimensões.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Paralelepípedo

Mensagempor Daniel Gurgel » Sáb Out 24, 2009 12:23

Eu tentei fazer assim:
2ab+2ac+2bc=720
a+b+c=34
aa+bb=400
Só que ñ consegui!
Daniel Gurgel
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sáb Ago 22, 2009 18:04
Formação Escolar: ENSINO MÉDIO
Área/Curso: concursos
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}