por flavio2010 » Seg Jun 28, 2010 23:47
Um poliedro convexo tem 5 faces quadrangulares e 4 faces triangulares. O número de diagonais é:
a) 6
b) 8
c) 9
d) 10
e) 12
-
flavio2010
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Qui Jun 10, 2010 22:27
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por vyhonda » Dom Jul 04, 2010 01:01
Para calcularmos as diagonais, primeiramente deve-se ter algumas informações como
nº de vertices, nº de faces, nº de arestas ...Para tal, utilizaremos a
Relação de Euler que é a seguinte ::
V + F = A + 2, onde V é o nº de vértices, F é o nº de faces e A é o nº de arestas.
Faces = 5 + 4 , pois temos 4 trinagulos e 5 quadrados
Arestas =

(pois cada um dos 5 quadrados possui 4 arestas e cada um dos 4 triângulos possui 3 arestas)
V + 9 = 16 + 2 , portanto V=9.
Com esses dados pode-se calcular o número de diagonais de um poliedro utilizando a fórmula ::

onde: - D : Total de diagonais do poliedro
- v : nº de vértices do poliedro
- A : nº de arestas do poliedro
-

: Somatória das diagonais das faces
Dessa forma:
- Resposta :: Alternativa D
OBS:: Para Calcular

, basta utilizar a fórmula da diagonal para figuras planas

, para cada figura geométrica, no caso apenas o quadrado possui diagonal, e cada quadrado possui 2 diagonais.
-
vyhonda
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Dom Jan 17, 2010 20:03
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Materiais - Unesp
- Andamento: cursando
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- poliedro
por Gir » Ter Jan 12, 2010 10:59
- 2 Respostas
- 1672 Exibições
- Última mensagem por Gir

Sex Jan 15, 2010 10:16
Geometria Espacial
-
- Poliedro
por aline2010 » Qui Ago 26, 2010 20:38
- 0 Respostas
- 1162 Exibições
- Última mensagem por aline2010

Qui Ago 26, 2010 20:38
Geometria Espacial
-
- poliedro
por creberson » Ter Set 18, 2012 10:20
- 3 Respostas
- 2746 Exibições
- Última mensagem por Renato_RJ

Ter Set 18, 2012 13:39
Geometria Espacial
-
- Desafio (Poliedro)
por Carolziiinhaaah » Sex Jul 09, 2010 22:22
- 1 Respostas
- 2112 Exibições
- Última mensagem por Tom

Sáb Jul 10, 2010 01:50
Matrizes e Determinantes
-
- (POLIEDRO) Provar que o no. é inteiro
por Carolziiinhaaah » Sex Fev 04, 2011 15:39
- 5 Respostas
- 2785 Exibições
- Última mensagem por Carolziiinhaaah

Sáb Fev 05, 2011 13:59
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.