• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Planos paralelos e projeção ortogonal

Planos paralelos e projeção ortogonal

Mensagempor dandara » Seg Dez 29, 2014 10:18

:?: Considere dois planos paralelos \alpha e \beta. Um quadrado KLMN está contido no plano \alpha e o ponto P pertence ao plano \beta de modo que sua projeção ortogonal no plano \alpha seja o ponto K. Assim, está correto afirmar que:
A) PK perpendicular a PM
B) PK paralelo a LM
C) KL perpendicular a PK
D) KM paralelo a PN
dandara
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Set 23, 2014 14:37
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Planos paralelos e projeção ortogonal

Mensagempor adauto martins » Sex Jan 02, 2015 14:49

c)PK eh perpendicular a qquer segmento de reta do plano \alpha
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.