por creberson » Qui Ago 16, 2012 21:34
ola boa noite.
estou prescizando de uma ajuda.
Uma cilinbro reto ,com 10cm de altura e raio da base igual a 13cm, è cortado por uma plano paralelo ao eixo e distante 5cm desse eixo. Determine a area da seção plana determinada por esse plano.
-
creberson
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Seg Jul 23, 2012 21:28
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: matematica
- Andamento: cursando
por Russman » Qui Ago 16, 2012 22:16
Vamos tentar escrever está área como função da distancia

do eixo pincipal de simetria do cilindro , pois sabemos que, seja

essa área ,

e

seu raio de base,


.
É fácil de perceber que, na base, se traçamos uma reta paralela ao diâmetro do circulo a uma distância

de seu centro então o seu comprimento

é dado, via Teorema de Pitágoras, por

de onde

.
Assim, como

, então

.
Agora substitua os valores!.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- cilindro
por aprendiz » Dom Nov 09, 2008 23:10
- 0 Respostas
- 1241 Exibições
- Última mensagem por aprendiz

Dom Nov 09, 2008 23:10
Geometria Analítica
-
- Cilindro
por geriane » Qui Abr 22, 2010 16:21
- 1 Respostas
- 3325 Exibições
- Última mensagem por MarceloFantini

Qui Abr 22, 2010 17:35
Geometria Espacial
-
- Cilindro.
por nandokmx » Qua Jun 02, 2010 11:40
- 3 Respostas
- 2173 Exibições
- Última mensagem por MarceloFantini

Qui Jun 03, 2010 03:43
Geometria Espacial
-
- Cilindro
por renataf » Qua Dez 01, 2010 20:27
- 2 Respostas
- 6150 Exibições
- Última mensagem por renataf

Qui Dez 02, 2010 17:46
Geometria Espacial
-
- cilindro
por scoth » Sex Jul 20, 2012 20:07
- 3 Respostas
- 3409 Exibições
- Última mensagem por fraol

Dom Jul 22, 2012 21:18
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.